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Motivation

Structural Pattern Recognition

Rich description of objects

Poor properties of graph’s space does not allow to readily
generalize/combine sets of graphs

Statistical Pattern Recognition

Global description of objects

Numerical spaces with many mathematical properties (metric,
vector space, . . . ).

Motivation
Analyse large famillies of structural and numerical objects using a unified
framework based on pairwise similarity.
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Chemoinformatics

Usages of computer science for chemistry
Prediction of molecular properties

Prediction of biological activities
Toxicity, cancerous . . .

Prediction of physico-chemical properties.
Boiling point, LogP, ability to capture CO2. . .

Screening :

Synthesis of molecule,

Test and validation of the synthesized
molecules

Virtual Screening :

Selection of a limited set of candidate
molecules,

Synthesis and test of the selected molecules,

Gain of Time and Money
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Molecular representation

Molecular Graph:

Vertice atoms.

Edges Atomic bonds.

H
3
C

Cl O

O

O P

S

O

CH3

O CH3

Cl

P

S

O

C

C
C

C

C C

C

CC

C C

C

C C

O

O O

O

Similarity principle [Johnson and Maggiora, 1990]

“Similar molecules have similar properties.”

Design of similarity measures between molecular graphs.
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Kernel Theory

Kernel k : X × X → R
Symmetric: k(xi , xj) = k(xj , xi ),

For any dataset D = {x1, . . . , xn}, Gram’s matrix K ∈ Rn×n is defined by
Ki,j = k(xi , xj).

Semi-definite positive: ∀α ∈ Rn, αTKα ≥ 0

Connection with Hilbert spaces, reproducing kernel Hilbert
Spaces [Aronszajn, 1950]:

Relationship scalar product ⇔ kernel :

k(x , x ′) = 〈Φ(x),Φ(x ′)〉H.
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Graph Kernels

Graph kernels in chemoinformatics

Graph kernel k : G × G → R.

Similarity measure between molecular graphs

Natural encoding of a molecule

Implicit embedding in H,

Machine learning methods (SVM, KRR, . . . ).

Natural connection between molecular graphs and machine learning methods

Definition of a similarity measure as a kernel
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Kernels based on bags of patterns

Graph kernels based on bags of patterns

(1) Extraction of a set of patterns from graphs,

(2) Comparison between patterns,

(3) Comparison between bags of patterns.
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Treelets

Set of labeled subtrees with at most 6 nodes :

Encode branching points

Take labels into account.

Pertinent from a chemical point of view

limited set of substructures

Linear complexity (in O(nd5)).
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enumaration

Labelling

Code encoding the labels,

Defined on each of the 14 structure of treelet,

Computation in constant time.

H3C

CH3

CH3

OOCC
CC

CC

CCC

Canonical code :

type of treelet, }
canonical code : G9-C 1C 1C 1O1C 1C

Labels.

t ' t ′ ⇔ code(t) = code(t ′)
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Definition of the Treelet kernel

Counting treelet’s occurences

ft(G ) : Number of occurences of treelet t in G .

Treelet kernel
kT (G ,G ′) =

∑
t∈T (G)∩T (G ′)

kt(G ,G ′)

T (G ) : Set of treelets of G .

kt(G ,G ′) = k(ft(G ), ft(G ′).

kt(., .) : Similarity according to t.
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Pattern selection

Prediction problems:

Different properties Different causes.

Chemist approach:

Pattern relevant for a precise property

A priori selection by a chemical expert

Machine learning approach:

Parcimonious set of relevant treelets

Selection a posteriori induced by data.
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Multiple kernel learning

Combination of kernels [Rakotomamonjy et al., 2008] :

k(G ,G ′) =
∑
t∈T

kt(G ,G ′)

T : Set of treelets extracted from the learning dataset.

wt ∈ [0, 1] : Measure the influence of t

Weighing of each sub kernel

Selection of relevant treelets

Weighs computed for a given property.
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Multiple kernel learning

Optimal Combination of kernels [Rakotomamonjy et al., 2008] :

kW (G ,G ′) =
∑
t∈T

wt kt(G ,G ′)

T : Set of treelets extracted from the learning dataset.

wt ∈ [0, 1] : Measure the influence of t

Weighing of each sub kernel

Selection of relevant treelets

Weighs computed for a given property.
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Experiments

Prediction of the boiling point of acyclic molecules:

183 acyclic molecules :

Learning set: 80 %
 10×Validation set: 10 %

Test set: 10 %

Selection of optimal parameters using a grid search

RMSE obtained on the 10 test sets.

OO
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Experiments

Prediction of the boiling point of acyclic molecules:

Méthode RMSE (◦C)

Descriptor based approach [Cherqaoui et al., 1994]* 5,10
Empirical embedding [Riesen, 2009] 10,15
Gaussian kernel based on the graph edit distance [Neuhaus and Bunke, 2007] 10,27
Kernel on paths [Ralaivola et al., 2005] 12,24
Kernel on random walks [Kashima et al., 2003] 18,72
Kernel on tree patterns [Mahé and Vert, 2009] 11,02
Weisfeiler-Lehman Kernel[Shervaszide, 2012] 14,98
Treelet kernel 6,45
Treelet kernel with MKL 4,22

* leave-one-out
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Cyclic molecular information

Cycles of a molecule

Have a large influence on molecular properties.

Identifies some molecular’s families.

(a) Benzène

N

(b) Indole (c) Cyclohexane

Cyclic information must be taken into account.
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Relevant Cycles

Enumeration of all cycles is NP complete

Cycles of a graph form a vector space on Z
2Z .

HN

HN

O

O

OH

O
O
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Relevant Cycles

Enumeration of relevant cycles [Vismara, 1995]:

Union of all cyclic bases with a minimal size,

Unique for each graph,

Enumeration in polynomial time,

Kernel on relevant cycles [Horváth, 2005].

HN

HN

O

O

OH

O
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Relevant cycles Graph

Graph of relevant cycles GC(G ) [Vismara, 1995] :

Representation of the cyclic system,

Vertices: Relevant cycles,

Edges: intersection between relevant cycles.
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O

O
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O
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Relevant cycles Graph

Similarity between relevant cycle graphs

Enumeration of relevant cycle graph’s treelets.

Adjacency relationship between relevant cycles.

Extracted Patterns :

HN

HN

O

O

OH

Solely cyclic information.
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Relevant cycle Hypergraph

Connexion between cycles and acyclic parts

Idea : Molecular Representation:

Global,
Explicit cyclic Information

Addition of acyclic parts to the relevant cycle graph.

HN
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O

O
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Relevant cycle Hypergraph

Problem : An atomic bound can connect an atom to two cycles.
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Relevant cycle Hypergraph

Connexion between cycles and acyclic parts

hypergraph representation of the molecule.

Adjacency relationship: oriented hyper-edges.

N

S

S

C

O

N

S

S

C

O

Hypergraph comparison.
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Treelets on relevant cycle hypergraphs

Adaptation of the treelet kernel:

(1) enumeration of the relevant cycle hypergraph’s treelets without hyper-edges.

(2) Contraction of cycles incident to each hyper-edge.

Construction of the reduced relevant cycle hypergraph GRC (G).

(3) Extraction of treelets containing an initial hyper-edge

N

S

S

C

O
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Kernel on relevant cycle hypergraphs

Bag of patterns: TCR(G ) = T1 ∪ T2

T1: Set of treelets obtained from the hypergraph without hyper-edges.

T2 : Set of treelets extracted from GRC (G ).
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Kernel on relevant cycle hypergraphs

Bag of patterns: TCR(G ) = T1 ∪ T2

T1: Set of treelets obtained from the hypergraph without hyper-edges.

T2 : Set of treelets extracted from GRC (G ).

Kernel design:

kT (G ,G ′) =
∑

t∈TCR (G)∩TCR (G ′)

wt kt(ft(G ), ft(G ′))
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Experiments

Predictive Toxicity Challenge

Molecular graph labelled and composed of cycles.

' 340 molecules for each dataset

4 classes of animals (MM, FM, MR, FR) :

Learning set ' 310 molécules,
}

10×
Test set ' 34 molecules,
Number of molecules correctly classified on the 10 test sets.

Méthode MM FM MR FR

Treelet kernel (TK) 208 205 209 212
Relevant cycle kernel 209 207 202 228
TK on relevant cycle graph (TC) 211 210 203 232
TK on relevant cycle hypergraph

217 224 207 233
(TCH)

L. Brun (GREYC) Seminar Bordeaux, November, 20 2014 25 / 32
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Experiments

Predictive Toxicity Challenge

Méthode MM FM MR FR

Treelet kernel (TK) 208 205 209 212
Relevant cycle kernel 209 207 202 228
TK on relevant cycle graph (TC) 211 210 203 232
TK on relevant cycle hypergraph

217 224 207 233
(TCH)

TK + MKL 218 224 224 250
TC + MKL 216 213 212 237
TCH + MKL 225 229 215 239
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Experiments

Méthode MM FM MR FR

Treelet kernel (TK) 208 205 209 212
Relevant cycle kernel 209 207 202 228
TK on relevant cycle graph (TC) 211 210 203 232
TK on relevant cycle hypergraph

217 224 207 233
(TCH)

TK + MKL 218 224 224 250
TCH + MKL 225 229 215 239

Combo TK - TCH 225 230 224 252

Gaussian kernel on graph edit distance [Neuhaus and Bunke, 2007] 223 212 194 234
Laplacien kernel 207 186 209 203
Kernel on paths [Ralaivola et al., 2005]* 223 225 226 234
Weisfeiler-Lehman Kernel [Shervaszide, 2012] 138 154 221 242

* leave-one-out
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Conclusion

General problem:

Kernel between molecular graphs including cyclic and acyclic patterns in order to
predict molecular properties.

Extensions :

Cyclic Information:

Encoding the relative positioning of atoms

R2

R1

R3

R2

R1

R3

Taking into account stereoisometry.
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Kernel between shapes

Compute skeletons

Encode skeletons by graphs,

Kernel between bags of treelets.

a) le graphe

b) la segmentation
           induite
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Kernel on strings
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Decompose the scene into zones,

Compute a string encoding the sequence of traversed zones,

Define a kernel between strings,

Cluster strings.
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