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Pros

Interest: provide a compact encoding of both :
a decomposition of objects into meaningful sub-parts,
the relationships between these sub-parts.

Applications:
Image processing: segmentation, boundary detection,
Pattern Recognition: printed characters, documents, objects
(buildings, brain structures), faces, gestures, molecules,. . . ,
Image registration,
Understanding of structured scenes.
. . .
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Cons

Even simple questions are difficult:
Are this two graphs the same ?

NP-intermediate
Is this graph a sub-part of this graph ?

NP-complete
What is the distance between these two
graphs ?

NP-hard (for the usual distance)
What is the mean/median of a set of
graphs ?

NP-hard (for the usual distance)
Pattern Recognition implies:

1 Metrics,
2 Non exponential execution times.
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Graph space as an Orbifold

[Jain, 2016, Jain and Wysotzki, 2004, Jain, 2014].
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Orbifolds theory: basics

Let T be the manifold of n × n matrices.
One graph may have multiple matrix representations

G=
ia
1ic

ib
�
��2

1 2 3
1 a 0 1
2 0 b 2
3 1 2 c

1 2 3
1 c 1 2
2 1 a 0
3 2 0 b

1 2 3
1 b 2 0
2 2 c 1
3 0 1 a

. . .

x y z. . .

Let P denote the set of n × n permutation matrices:

∀(x , y) ∈ T x ∼ y ⇔ ∃P ∈ P|x = P tyP

T / ∼ is called an orbifold
A graph G is encoded in T / ∼ by [XG ] = {x , y , z , . . . }.
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Orbifolds theory: basics

Let X and Y denote two elements of T / ∼:
< X ,Y > = max{< x , y > x ∈ X , y ∈ Y }
δ(X ,Y ) =

√
‖X‖2 + ‖Y ‖2 − 2 < X ,Y >

= minx∈X ,y∈Y ‖x − y‖

This metric is called the graph alignment metric.
Using real attributes, the space (G, δ) is:

A complete metric space,
a geodesic space,
locally compact,
every closed bounded subset of (G, δ) is compact.
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Orbifold theory: Applications

Computation of the sample mean [Jain, 2016]
The sample mean of a set of graphs always exists.
Under some conditions, the set of sample means reduces to a
singleton.

Central clustering algorithms [Jain and Wysotzki, 2004],
Generalized linear classifiers [Jain, 2014]
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Orbifold theory: limits

The enumeration of [X ] requires n! computations.
Graph metric is induced by graph representation: Both concepts
can not be distinguished.

G1=
ia
αic

ib
�
��β

a 0 α
0 b β
α β c G2=ic

ib
�
��β

0 0 0
0 b β
0 β c

We have:
δ(G1,G2) =

√
a2 + α2

We should search for a more flexible metric.
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Graph Edit distance
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Edit Paths
Edit Paths

Definition (Edit path)
Given two graphs G1 and G2 an edit path between G1 and G2 is a
sequence of node or edge removal, insertion or substitution which
transforms G1 into G2.

x
x x

h -

Removal of two
edges and one node

x x
h -

insertion of
an edge

x x
h@

@

-

substitution of
a node

x x
h@

@

A substitution is denoted u → v , an insertion ε→ v and a removal
u → ε.

Alternative edit operations such as merge/split have been also
proposed[Ambauen et al., 2003].
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Costs

Let c(.) denote the cost of any elementary operation. The cost of an
edit path is defined as the sum of the costs of its elementary
operations.

All cost are positive: c() ≥ 0,
A node or edge substitution which does not modify a label has a
0 cost: c(l → l) = 0.

x
x x

h
G1

-

e1 = | → ε

e2 = − → ε

e3 = • → ε

x x
h -

e4 = ε→ \

x x
h@

@

-

e5 = s-s x x
h@

@

G2

If all costs are equal to 1, the cost of this edit path is equal to 5.

Conversely to graph alignment metric, costs allow to dis-
tinguish graph representation and graph metrics.
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Graph edit distance

Definition (Graph edit distance)
The graph edit distance between G1 and G2 is defined as the cost of
the less costly path within Γ(G1,G2). Where Γ(G1,G2) denotes the
set of edit paths between G1 and G2.

d(G1,G2) = min
γ∈Γ(G1,G2)

cost(γ) = min
γ∈Γ(G1,G2)

∑
e∈γ

c(e)

An NP-hard problem.
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Graph edit distance: Main methods

1 A∗ like algorithms [Abu-Aisheh, 2016],

2 Formulation as a quadratic problem [Bougleux et al., 2017]
solved by Franck-Wolfe [Frank and Wolfe, 1956] like algorithms
(see also:
[Liu and Qiao, 2014, Boria et al., 2018, Daller et al., 2018].

3 Integer Programming [Lerouge et al., 2017, Darwiche, 2018]

4 Fast (and often rough)
approximations [Riesen and Bunke, 2009, Gaüzère et al., 2014a,
Carletti et al., 2015, Blumenthal et al., 2018]
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Graph edit distance: Comparison

Relative comparison:
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Graph Edit distance: Conclusion

iyq q Allows to dissociate graph representation and graph
metric.iyq q Constitutes a fine and intuitive metric between graphs.iyq q It is NP-hard to compute,iyq q It is not conditionally definite negative (Krein space).

Most of machine learning machinery should be
adapted [Loosli et al., 2016].
Weak properties: E.g. the median is usually not
unique.

Library: https://github.com/Ryurin/Python_GedLib
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Graph Kernels
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Kernels : Definition

A kernel k is a symmetric similarity measure on a set χ

∀(x , y) ∈ χ2, k(x , y) = k(y , x)

k is said to be definite positive (d.p.) iff k is symmetric and iff:

∀(x1, . . . , xn) ∈ χn

∀(c1, . . . , cn) ∈ Rn

} n∑
i=1

n∑
j=1

cicjk(xi , xj) ≥ 0

K = (k(xi , xj))(i ,j)∈{1,...,n} is the Gramm matrix of k . k is d.p. iff:

∀c ∈ Rn − {0}, c tKc ≥ 0
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Kernels and scalar products

[Aronszahn, 1950] :
A kernel k is d.p. on a space χ
if and only if
it exists

one Hilbert space H and
a function ϕ : χ→ H

such that:

k(x , y) =< ϕ(x), ϕ(y) >

Open the way for rich interactions between graphs and usual machine
learning methods: SVM, kPCA, MKL,. . .
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Graph Kernel: methods

K (G ,G ′) =
∑

x∈B(G)

∑
y∈B(G ′)

k(x , y)

where B(G) is a bag of patterns deduced from G [Haussler, 1999].
Linear Patterns:

Random Walk Kernel [Kashima et al., 2003, Gärtner et al., 2003]
n order path kernel: [Ralaivola et al., 2005, Dupé and Brun, 2009]
Shortest Path [Hermansson et al., 2015]

Non linear patterns:
Tree Pattern kernel [Mahé and Vert, 2009,

Shervashidze and Borgwardt, 2009]
Graphlet Kernel [Shervashidze et al., 2009]
Treelet kernels [Gaüzère et al., 2014b]
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Some results
Chemoinformatics

Method RMSE(oC) Time(s)
Learning Prediction

Gaussian edit distance 10.27 1.35 0.05
Random Walks 18.72 19.10 0.57

Path Kernel 12.24 7.83 0.18
Tree Pattern Kernel 11.02 4.98 0.03
Treelet Kernel (TK) 8.10 0.07 0.01

TK + MKL 5.24 70 0.01
Boiling point prediction on acyclic molecule dataset using 90% of the dataset as train set and
remaining 10% as test set.
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Graph kernels:

Pros:
Graph kernels provide an implicit embedding of graphs,
Its open the way to the application of many statistical tools to
graphs,

Cons:
Graph kernels are usually based on a notion of bag which only
provides a rough similarity measure.
The graph feature extraction process has been moved to the
design of a similarity measure (the kernel). Such a measure
remains largely “handcrafted”.

Libraries:
https://github.com/jajupmochi/py-graph
http://chemcpp.sourceforge.net/html/index.html
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Graph Neural Network
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Graph Neural Networks: Three main steps

1 Agregation,
2 Decimation,
3 Pooling
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Agregation: The problem

1

2

3

4

l1,2

l1,3
l1,4

h1 = fw (l1,
{l1,2, l1,3, l1,4},
{h2, h3, h4},
{l2, l3, l4}
)

{
hv = fw (lv , lCON(v), hN (v), lN (v))
ov = gw (hv , lv )

with CON(v) = {(v , v ′) v ′ ∈ N (v)}
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Iteration

1

2

3

4

l1,2

l1,3
l1,4

t = 0

t = 1
t = 2
t = 3
t = 4

{
ht

v = fw (lv , lCON(v), ht−1
N (v), lN (v))

ov = gw (hT
v , lv )
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Graph Convolution
The problem

Using images we learn w0 . . . ,w8:

w5 w1 w6
w3 w0 w4
w7 w2 w8

w1 denotes the weigh of the pixel above the central pixel.
Using graphs:

iw0

yw1

yw2
�� yw3
AA

iw0

yw1

yw2
�� yw3
AA

iw0

yw1

yw2
�� yw3
AA

Without embedding nothing distinguishes the cyan,red and green
neighbors.
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How to become permutation invariant

ht
v = fw (lv , lCON(v), ht−1

N (v), lN (v))

ht
v =

∑
v ′∈N (v)

f (lv , lv ,v ′ , lv ′ , h(t−1)
v ′ )

where f may be:
An affine function [Scarselli et al., 2009],

f (lv , lv ,v ′ , lv ′ , h(t−1)
v ′ ) = A(lv ,lv,v′ ,lv′ )h(t−1)

v ′ + b(lv ,lv,v′ ,lv′ )

A MLP [Massa et al., 2006]
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More complex agregation functions

A long Short-term Memory [Hochreiter and Schmidhuber, 1997,
Peng et al., 2017, Zayats and Ostendorf, 2018]
A Gated Reccurent Unit [Li et al., 2016]

h(1)
v = [xT

v , 0] (1)
a(t)

v = AT
v [h(t−1) T

1 , . . . , h(t−1) T
|V | ]T + b (2)

z t
v = σ(W za(t)

v + Uzh(t−1)
v ) (3)

r t
v = σ(W ra(t)

v + U rh(t−1)
v ) (4)

h̃(t)
v = tanh

(
Wa(t)

v + U
(
r t
v � h(t−1)

v

))
(5)

ht
v = (1− z t

v )� h(t−1)
v + z t

v � h̃t
v (6)

z t
v : update gate, r t

v : reset gate, Av : weight by edges types.
Learned weight by edge type:
a(t)

v = ∑
w∈N (v) Alv,w h(t−1)

w [Gilmer et al., 2017]
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Graph attention Networks
[Velickovic et al., 2018]

Not all neighbors have a same importance for update:

αv ,v ′ = softmaxv ′(ev ,v ′) = exp(ev ,v ′)∑
v ′′∈Ni exp(ev ,v ′′)

With : ev ,v ′ = LeakyReLU(aT [Whv ||Whv ′])
a,W : weight vector and matrix.
Update rule:

h′v = σ(
∑

v ′∈Nv

αv ,v ′Whv ′)

With K features:

h′v = ||Kk=1σ(
∑

v ′∈Nv

αk
v ,v ′W khv ′)
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Graph Convolution
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The spectral approach [Defferrard et al., 2016]

Graph Laplacian:

L = D − A with Dii =
n∑

j=1
Aij

A adjacency matrix of a graph G .
Matrix L is real symmetric semi definite positive:

L = UΛUT

U orthogonal, Λ real(positive) diagonal matrix.
A classical result from signal processing:

x ∗ y = F−1(x̂ .ŷ)

*: convolution operation, F−1 inverse Fourrier transform, x̂
fourrier transform of x , ’.’ term by term multiplication.
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Graph Convolution
The spectral approach

If x is a signal on G , x̂ = UT x can be considered as its
“Fourrier” transform. We have:

Ux̂ = UUT x = x

U is thus the inverse Fourrier transform.
By analogy:

z ∗ x = U(ẑ � x̂) = U
(
UT z � UT x

)
= U

(
diag(UT z)UT x

)
�: Hadamard product.
Let gθ(Λ) be a diagonal matrix. The filtering of x by gθ is:

y = U
(
gθ(Λ)UT x

)
=
(
Ugθ(Λ)UT

)
x
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Graph convolution
The spectral approach

If:
gθ(Λ) =

K−1∑
i=0

θiΛi

Then:

y =
(
Ugθ(Λ)UT

)
x = U

(K−1∑
i=0

θiΛi
)

UT x =
(K−1∑

i=0
θiLi

)
x

One parameter per ring:
Lx : one step (direct) neighborhood,
L2x : two step neighborhood (idem for L3, L4, . . . )

Problem: Computing Li for i ∈ {0, . . . ,K − 1} is problematic for
large matrices (SVD computation)
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Graph convolution
The spectral approach

Let us consider Chebyshev polynomial
Tk(x) = 2xTk−1(x)− Tk−2(x), with T0 = 1 and T1(x) = x .

gθ(Λ) =
K−1∑
i=0

θiΛi → gθ(Λ) =
K−1∑
i=0

θiTi(Λ̃)

Λ̃ normalized version of Λ.
we have:

x̃k = 2L̃x̃k−1 − x̃k−2 with x̃0 = x and x̃1 = L̃x

O(K |E|) operations to get x̃k .
If K = 2 it simplifies to [Kipf and Welling, 2017]: y = θL′x
where L′ is a regularized version of the normalized Laplacian.
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Graph convolution
Non spectral approaches

[Simonovsky and Komodakis, 2017]

yi = 1
|N (i)|

∑
j∈N (i)

Fθ(L(j , i))xj + b

F : Parametric function of θ which associates one weigh to each
edge label L(j , i).
[Verma et al., 2017]:

yi = 1
|N (i)|

M∑
m=1

∑
j∈N (i)

qθm(xj , xi)Wmxj + b

qθm(., .) mth learned soft-assignment function. Wm weight
matrix.
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Graph Propagation
Conclusion

Recurent networks
[Hochreiter and Schmidhuber, 1997]

[Massa et al., 2006]
[Scarselli et al., 2009]

[Li et al., 2016]
[Gilmer et al., 2017]

[Peng et al., 2017]
[Zayats and Ostendorf, 2018]

Convolution

[Bruna et al., 2014]
[Defferrard et al., 2016]

[Kipf and Welling, 2017]
[Simonovsky and Komodakis, 2017]

[Verma et al., 2017]

Agregation
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What’s next ?

Graph Downsampling, Graph pooling, Graph final decision:
Some solutions but still the jungle.
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Conclusion

Three graph metrics

-

6Freedom

Machine Learning

t
Graph kernels

t
Graph edit distance

t
Graph Alignment

6
Mathematical Richnesst Graph Kernels

t Graph alignment

t Graph edit distance

Graph neural network:
Still in their infancy,
A great potential.
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(2017). Graph edit distance as a quadratic assignment problem. Pattern
Recognition Letters, 87:38–46. Impact factor : 1.586.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. (2014). Spectral networks
and locally connected networks on graphs. In 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings.
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