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Topics of the lecture

Segmentation and Structural Pattern Recognition.

How may we encode and build partitions
Basic properties,
Non hierarchical encoding,
Hierarchical encoding.

How to relate two partitions
Algorithmic methods
Optimisation methods.
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Discrete Geometry : Plan (1/2)

Discrete representation ofIR2

Tessellations
Regular tessellations of the plane.
Recursive tessellation.
Tessellation and lattice ofIR2

Topological characterisation of lattices

Discrete spaces
Neighborhood
Paths
Connected sets
Discrete paradoxes
Borders of a set in a discrete space
Convex set in a discrete space
Distances and discrete spaces.
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Plan (2/2)

Kovalevsky’s Topology.
Finite Topology,
Cellular Complex set
Theorem: Cellular complex sets and topology
Star
Paths, connectedness
adherence, interior
Border
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Discrete modeling ofIR2

Tessellation methods A tessellation or tiling of the plane is a collection of
plane figures that fills the plane with no overlaps and no gaps using
isometry.
An isometry is a transformation of the space which keeps shape’s lengths
and angles. Rotations, translations, axial symmetry symmetry are the
plane’s isometry.
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Tesselations et Sensors

Map to each sensor its set of closest points.

Random locations Square grid location Triangular grid location
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Regular tesselation (2)

Only 3 possible solutions inIR2 :
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Triangular tessellation Square tessellation Hexagonal tessellation
(3) (4) (6)
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Regular tessellation : Demonstration (1)

n : nb sides of a polygon,

s : number of polygons incident to
one vertex,

sides of equal length:β = 2π
n

Sum of the angles of a triangle:
β + 2α = π

→ α = π

(

n − 2

2n

)

Turning around a vertex:s.2α = 2π

→ sα = π ⇒ s =
2n

n − 2

s

P

α

β

2α
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Regular Tesselation : Démonstration (2)

→ sα = π ⇒ s =
2n

n − 2

Forn ≥ 7, s < 3 ⇒ solutions only forn < 7.

Regular Polygons Number of sides n Nb polygons incident to one vertex S

Equilateral Triangle 3 6

Square 4 4

Hexagon 6 3
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Recursive tesselations

A recursive tesselation is a tesselation where each polygon may be decomposed
into polygons of a same but with a lower size.

Square recursive Triangular recursive
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Tesselations/Lattices

Given a tesselation, we build its associated lattice by locating one pointin
each polygon and by connecting any two points whose associated polygons
share a side.

Square tesselation hexagonal tesselation triangular tesselation
Square lattice Triangular lattice Hexagonal lattice

This is a particular case of the notion ofDual Graph

Image modeling – p. 11/41



Square tesselation and 8-connected lattice

Lattice defined for a square tesselation.

Connect any two vertices of the lattice whose associated squares are
incident by a sideor a vertex.

Remark: The lattice is no more a planar graph.
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Discret Spaces

Discretization of the spaceIR2

Tesselation methods,
Regular tessellation of the plane,
Recursive tessellation,
lattices ofIR2,
Topological characteristics of lattices.

The discrete space
Neighborhoods,
Paths,
Connectedness,
Discrete paradoxes,
Border of a set in a discrete space
Convex sets is a discrete space,
Distances and discrete spaces.
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4 and 8 Neighborhoods

4 connected lattice

V4(i, j) = {(i − 1, j), (i, j), (i + 1, j), (i, j + 1)}
V4(i, j) = {(i′, j′) ∈ IN2 [ |i − i′| + |j − j′| = 1}

8 connected lattice

V8(i, j) = {(i − 1, j − 1), (i − 1, j), (i − 1, j + 1), (i, j − 1), (i, j), (i, j + 1)

(i + 1, j − 1), (i + 1, j), (i + 1, j + 1)}
V8(i, j) = {(i′, j′) ∈ IN2 [ max{|i − i′|, |j − j′|} = 1}
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V4( ) = +

V8( ) = + +
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Triangular Neighborhood

The indexes are relative to the parity of the lines:

If j is even:

V (i, j) = {(i−1, j−1), (i, j−1), (i−1, j), (i+1, j), (i−1, j +1), (i, j +1)}

If j is odd:

V (i, j) = {(i, j−1), (i+1, j−1), (i−1, j), (i+1, j), (i, j +1), (i+1, j +1)}
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(2,2)
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j
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Hexagonal neighborhood

V3: sides

V9: Sides(2)

V12: Sides + vertices

3 connexite 6 connexite 12 connexite
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Paths

A path is sequence of vertices of a lattice such that each vertex (except the
last one) belongs to the neighborhood of the next vertex in the sequence:

P = P1 . . . , Pn,∀i ∈ {1, . . . , n − 1}Pi ∈ V (Pi+1)

In graph theory the above definition corresponds to awalk. However, both
definitions will coincide in the following since we will only consider simple
paths which add the following additional constraint: each vertex (except the
first and last one) appears only once.

If the last point is equal to the first one the path is say to be closed.

The notion of path is relative to the type of lattice and to the notion of
connectedness defined on it. We will speak of:

4 or 8 connected paths on a square lattice,
6 connected paths on a triangular lattice,
3,9 and 12 connected paths for an hexagonal lattice.
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Examples of paths
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i

j

lattice triangular hexagonal square square
Path 6 connected 9 connected 8 connected 4 connected
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Connected sets

0 1 2 3 4 5
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Définition :
A setX of the lattice is calledx-connected iff for any couple(P,Q) of
points ofX it exists onex-path withinX which joinsP andQ

∀(P,Q) ∈ X2 ∃P = P1 . . . , Pn = Q | ∀i ∈ {1, . . . , n}Pi ∈ X

The notion of connectedness is thus relative to the lattice and to the
connectedness chosen on it. One will speak about4, 6 or 8 connected sets.

Within the image Processing/Analysis framework a connected set of pixels
is usually called aregion(not an universal def).
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Paradoxes of the 4 and 8 connectedness

4 connectedness 8 connectedness

not connected Connexion of the complementary set

Either two connected components forand the complementary,

Either a single connected component forand its complementary.

One usual convention consists to use one connectedness for the object and
the other for the complementary. We then got:

Either 2 connected components for the object and one for the
complementary,
Either one connected component for the object and 2 for the
complementary.

Image modeling – p. 20/41



border of a discrete space

Using usual topological defs:∂X = X −
◦

X

Pb : we do not really have a topology. We thus say:
One point belongs to the border of a setX p-connected iff it haves one
neighbor inCE(X).

We do not have∂X = ∂CE(X). We thus differentiate two notions: the
Internal and the External borders.

P belongs to the internal border ofX p-connected iff:

P ∈ X and∃P ′ ∈ Vq(P ) ∩ CE(X)

whereq is the connectedness of the complementary ofX.
P belongs to the external border ofX p-connected iff:

P ∈ CE(X) and∃P ′ ∈ Vp(P ) ∩ X
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Jordan’s Theorem

Any simple closed curve∂X divide the whole space in two domains: one
interior domainW and one external oneCE(X), each domain being connected.

X

∂X

CE(X)
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Discrete Jordan theorem

Property :

Within a square lattice any 4 connected path (resp. 8 connected path)
closed and simple separate the space in two 8-connected (resp. 4
connected) components: the interior and the exterior.
Within a triangular lattice, any 6 connected closed simple path separate
the space in two 6 connected components: the interior and the exterior.

Donc :

Objet Internal Border External border

4 connected 4 connected 8 connected

8 connected 8 connected 4 connected

6 connected 6 connected 6 connected
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Examples of borders
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1 5432

Internal Border 4 connected 8 connected 6 connected
External Border 8 connected 4 connected 6 connected
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Convexity and discrete spaces

The digitisation may involve a loss of the convexity defined withinIR2.
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Discrete spaces and distances

Within IR2 the distance between two points is the length of the line segment
joining these two points.

Within ∠Z2 the distance between two points of∠Z2 is the minimal length of
the paths joining the two points.

Length of the path: Nb edges =Nb points (-1 if the path is open)

Squared lattice
4 connected lattice: vertical and horizontal edges,
8 connected lattice: vertical and horizontal edges together with45◦

edges.

triangular lattice
6 connected lattice: edges with an angle of60◦.
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Distances : Examples

x
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y

Squared lattice triangular lattice
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d(x, y) = 2
√

5 ≈ 4.46

d4(x, y) = 6

d8(x, y) = 4

d′8(x, y) = 2
√

(2) + 2 ≈ 4.82

d6(x, y) = 5
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Unicity of the discrete distance

The distance is defined without ambiguity BUT the shortest path is usually
not unique (Graph property).

d4 d6
x

y

x

y

Squared lattice Triangular lattice
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Kovalevsky’s Topology

Discrete representation ofIR2

Tessellations
Regular tessellations of the plane.
Recursive tessellation.
Tessellation and lattice ofIR2

Topological characterisation of lattices

Discrete spaces

Kovalevsky’s Topology
Topology,
Finite Topology,
Cellular Complexes,
Theorem : Cellular complexes and topology,
Star,
Paths, connectedness,
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Topology (1/2)

Let X be any set and letT be a family of subsets of X. ThenT is a topology on
X iff:

1. Both the empty set and X are elements ofT ,

2. Any union of arbitrarily many elements ofT is an element ofT ,

3. Any intersection of finitely many elements ofT is an element ofT .

If T is a topology on X, then :

the pair(X, T ) is called a topological space, and

the elements ofT are called the open sets of(X, T ).
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Topology (2/2)

Neighborhood filter:

V(x) ∈ P(E) is a neighborhood filter ofx iff:
1. Any over set of a neighborhood ofx is a neighborhood ofx.

∀(V,W ), V ∈ V(x), V ⊂ W ⇒ W ∈ V(x)

2. The intersection of two neighborhood ofx is a neighborhood ofx

∀(V,W )V ∈ V(x),W ∈ V(x) ⇒ V ∩ W ∈ V(x)

3. Any neighborhood ofx containsx: ∀V ∈ V(x) ⇒ x ∈ V

4. For anyV ∈ V(x), it existsU ∈ V(x), U ⊂ V such thatV is a
neighborhood of any point inU .

∀V ∈ V(x),∃U ∈ V(x), U ⊂ V ;∀y ∈ U, V ∈ V(y)

Both definitions of a topology are compatibles.
neighborhoods open sets,
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Finite Topology

Finite Topology :
A finite topological space(E, T ) has a finite number of open sets.

Remark: Within a finite topological space any intersection or union of
open sets is finite. Therefore, any intersection or union of open sets
defines an open set.

Neighborhood :
The intersection of all open sets containinge ∈ E is an open set. It’s the
smallest neighborhood containinge (let us note itV (e))
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Cellular Complexes

A cellular complexC = (F,B, dim) is defined by a setF and:

A partial order relationshipB included inF × F and called the bordering
(or face) relationship.

(e1, e2) ∈ B readse1 is a border (or a face) ofe2.

One functiondim from F to IN such that:

If (e1, e2) ∈ B thendim(e1) < dim(e2).

Idea: We take into account all the elements of a tessellation.

Squared tessellation Hexagonal tessellation Triangular tesselation
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Notations (Jean Françon)

Elements of dimension 2 are calledpixels

Elements of dimension 1 are calledlignels

Elements of dimension 0 are calledpointels

lignel

pointel

pixel
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Theorem (1)

A topological space(E, T ) is aT0 space iff:

∀(x, y) ∈ E2 ∃U ∈ T | (x ∈ U andy 6∈ U) or (x 6∈ U andy ∈ U)

Any T0 finite topological space(E, T ) is a cellular complex

Idea of the proof:
we considerC = (E,B, dim)

(e1, e2) ∈ B iff:

e2 6= e1, e2 ∈ V (e1) ande1 6∈ V (e2)

The function dim is defined by:

dim(e) = (max
e′∈E

|V (e′)|) − |V (e)|
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Theorem (2)

for any finite cellular complexC = (E,B, dim), one may define a topology
T compatible withC.

Idea of the proof:

S ⊂ E ∈ T ⇔ ∀e ∈ S,∀e′, (e, e′) ∈ B e′ ∈ S

One open set contains all the elements that it borders.
is open

− • − is not.
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Star of an element

Let C = (E,B, dim) a cellular complex, the open star of one elemente ∈ E

(denoted bySt(e, C)) is the set of elements bordered bye.

e′ ∈ St(e, C) ⇔ (e, e′) ∈ B

we gotSt(e, C) = V (e) (smallest neighborhood containinge))

Using a squared tessellation:

St( , C) = ;

St( , C) =

St(•, C) =

|
− • −

|
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Paths, connectedness

Paths :
A sequenceP = e1, . . . , en within a cellular complexC = (E,B, dim) is
called a path iff:

∀i ∈ {1, . . . , n − 1} (ei, ei+1) ∈ B or (ei+1, ei) ∈ B

⇔ ei ∈ St(ei+1, C) or ei+1 ∈ St(ei, C)

P will be called closed iffe1 = en.

Connectedness :
One setX of a cellular complex is said to be connected iff any couple pf
elementse, e′ in X may be connected by a path included inX.
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Adherence, Interior

Adherence :
The adherence ofX is the set of elementse ∈ E whose star intersectX

e ∈ X ⇔ St(e, C) ∩ X 6= ∅

Interior :
The interior ofX is the set of elements whose star is included inX.

e ∈
◦

X ⇔ St(e, C) ⊂ X

X X
◦

X
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Boundary

e is called a border point iff his star intersect simultaneouslyX andCE(X).

e ∈ ∂X ⇔ St(e, C) ∩ X 6= ∅ andSt(e, C) ∩ CE(X) 6= ∅

Remark: We have,

∂X = X ∩ CE(X) = X −
◦

X

X X
◦

X ∂X
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Boundaries : Example

Definition of regions of a single pixel,

Encoding of the lignels of ann × m image by an(n + 1) × (m + 1) array.
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