

Image modeling*Images and Discrete Geometry*

Luc Brun

Topics of the lecture

Segmentation and Structural Pattern Recognition.

- How may we encode and build partitions
	- **Basic properties,**
	- Non hierarchical encoding,
	- Hierarchical encoding.
- How to relate two partitions
	- Algorithmic methods
	- Optimisation methods.

Discrete Geometry : Plan $(1/2)$

- Discrete representation of R^2
	- **Tessellations**
	- Regular tessellations of the plane.
	- Recursive tessellation.
	- Tessellation and lattice of R^2
	- Topological characterisation of lattices
- Discrete spaces
	- Neighborhood
	- **Paths**
	- Connected sets
	- **Discrete paradoxes**
	- Borders of a set in a discrete space
	- Convex set in a discrete space
	- Distances and discrete spaces.

- Kovalevsky's Topology.
	- **Finite Topology,**
	- Cellular Complex set
	- Theorem: Cellular complex sets and topology
	- Star
	- Paths, connectedness
	- adherence, interior
	- **Border**

Discrete modeling of R 2

GREYC²⁵

- Tessellation methods A tessellation or tiling of the plane is ^a collection ofplane figures that fills the plane with no overlaps and no gaps usingisometry.
	- An isometry is ^a transformation of the space which keeps shape's lengthsand angles. Rotations, translations, axial symmetry symmetry are theplane's isometry.

Tesselations et Sensors

■ Map to each sensor its set of closest points.

Random locations Square grid location Triangular grid location

Regular tesselation (2)

Only 3 possible solutions in \mathbf{R}^2 $\frac{2}{\cdot}$

(3) (4) (6)

Regular tessellation : Demonstration (1)

- s : number of polygons incident to one vertex,
- sides of equal length: β $=$ $\frac{2}{3}$ π $\, n$
- Sum of the angles of ^a triangle: $\beta + 2\alpha = \pi$

$$
\rightarrow \alpha = \pi \left(\frac{n-2}{2n} \right)
$$

Turning around a vertex: $s.2\alpha = 2\pi$

$$
\to s\alpha = \pi \Rightarrow s = \frac{2n}{n-2}
$$

s

P

 2α

 α

 β

Regular Tesselation : Démonstration (2)

GREYC¹⁵

$$
\to s\alpha = \pi \Rightarrow s = \frac{2n}{n-2}
$$

For $n \geq 7$, $s < 3 \Rightarrow$ solutions only for $n < 7$.

Recursive tesselations

GREYC¹⁵

A recursive tesselation is ^a tesselation where each polygon may be decomposedinto polygons of ^a same but with ^a lower size.

Square recursive Triangular recursive

Tesselations/Lattices

- GREYC²⁵
- Given ^a tesselation, we build its associated lattice by locating one point in each polygon and by connecting any two points whose associated polygonsshare ^a side.

Square tesselation hexagonal tesselation triangular tesselationSquare lattice Triangular lattice Hexagonal lattice

This is ^a particular case of the notion of **Dual Graph**

Square tesselation and 8-connected lattice

GREYC⁷

- Lattice defined for a square tesselation.
- Connect any two vertices of the lattice whose associated squares are incident by ^a side *or ^a vertex*.

Remark: The lattice is no more a planar graph.

Discret Spaces

- Discretization of the space \mathbb{R}^2
	- **Tesselation methods,**
	- Regular tessellation of the plane,
	- Recursive tessellation,
	- lattices of R^2 ,
	- Topological characteristics of lattices.
- **The discrete space**
	- Neighborhoods,
	- Paths,
	- Connectedness,
	- Discrete paradoxes,
	- Border of a set in a discrete space
	- Convex sets is a discrete space,
	- Distances and discrete spaces.

■4 connected lattice

$$
V_4(i,j) = \{(i-1,j), (i,j), (i+1,j), (i,j+1)\}
$$

\n
$$
V_4(i,j) = \{(i',j') \in \mathbb{N}^2 \left[|i-i'|+|j-j'|=1\right\}
$$

8 connected lattice

$$
V_8(i,j) = \{ (i-1,j-1), (i-1,j), (i-1,j+1), (i,j-1), (i,j), (i,j+1) \}
$$

\n
$$
(i+1,j-1), (i+1,j), (i+1,j+1) \}
$$

\n
$$
V_8(i,j) = \{ (i',j') \in \mathbb{N}^2 \mid max\{ |i-i'|, |j-j'| \} = 1 \}
$$

Triangular Neighborhood

The indexes are relative to the parity of the lines: If j is even:

$$
V(i,j) = \{(i-1,j-1), (i,j-1), (i-1,j), (i+1,j), (i-1,j+1), (i,j+1)\}\
$$

If j is odd:

 $V(i,j) =\{(i,j-1),(i+1,j-1),(i-1)\}$ $(1,j), (i+1,j), (i,j+1), (i+1,j+1)\}$

Hexagonal neighborhood

- V_3 : sides
- V_9 : Sides (2)
- V_{12} : Sides + vertices

■ A path is sequence of vertices of a lattice such that each vertex (except the last one) belongs to the neighborhood of the next vertex in the sequence:

 $P = P_1 \ldots, P_n, \forall i \in \{1, \ldots, n-1\} \, P_i \in V(P_{i+1})$

- In graph theory the above definition corresponds to ^a *walk*. However, both definitions will coincide in the following since we will only consider *simple paths* which add the following additional constraint: each vertex (except thefirst and last one) appears only once.
- \blacksquare If the last point is equal to the first one the path is say to be closed.
- The notion of path is relative to the type of lattice and to the notion of connectedness defined on it. We will speak of:
	- 4 or 8 connected paths on a square lattice,
	- 6 connected paths on a triangular lattice,
	- 3,9 and 12 connected paths for an hexagonal lattice.

Examples of paths

Connected sets

Définition:

A set X of the lattice is called x-connected iff for any couple (P,Q) of points of Y it exists an
example within Y which is ins R and O points of X it exists one x-path within X which joins P and Q

$$
\forall (P,Q) \in X^2 \,\exists P = P_1 \dots, P_n = Q \,|\, \forall i \in \{1, \dots, n\} P_i \in X
$$

■ The notion of connectedness is thus relative to the lattice and to the connectedness chosen on it. One will speak about 4, 6 or ⁸ connected sets.

■ Within the image Processing/Analysis framework a connected set of pixels is usually called ^aregione and the contract of the (100 m) and (100 m) a

Connected sets

Définition:

A set X of the lattice is called x-connected iff for any couple (P,Q) of points of Y it exists an
example within Y which is ins R and O points of X it exists one x-path within X which joins P and Q

$$
\forall (P,Q) \in X^2 \,\exists P = P_1 \dots, P_n = Q \,|\, \forall i \in \{1, \dots, n\} P_i \in X
$$

■ The notion of connectedness is thus relative to the lattice and to the connectedness chosen on it. One will speak about 4, 6 or ⁸ connected sets.

■ Within the image Processing/Analysis framework a connected set of pixels is usually called ^aregione and the contract of the (100 m) and (100 m) a

Connected sets

Définition:

A set X of the lattice is called x-connected iff for any couple (P,Q) of points of Y it exists an
example within Y which is ins R and O points of X it exists one x-path within X which joins P and Q

$$
\forall (P,Q) \in X^2 \,\exists P = P_1 \dots, P_n = Q \,|\, \forall i \in \{1, \dots, n\} P_i \in X
$$

- The notion of connectedness is thus relative to the lattice and to the connectedness chosen on it. One will speak about 4, 6 or ⁸ connected sets.
- Within the image Processing/Analysis framework a connected set of pixels is usually called ^aregione and the contract of the (100 m) and (100 m) a

Paradoxes of the 4 and 8 connectedness

4 connectedness 8 connectedness

- not connected Connexion of the complementary set
- Either two connected components for \blacksquare and the complementary,
- Either a single connected component for \blacksquare and its complementary.
- One usual convention consists to use one connectedness for the object and the other for the complementary. We then got:
	- Either 2 connected components for the object and one for the complementary,
	- Either one connected component for the object and 2 for the complementary.

border of ^a discrete space

- Using usual topological defs: ∂X $=X-X$ ◦
- Pb : we do not really have ^a topology. We thus say:One point belongs to the border of a set X $p\text{-connected}$ iff it haves one neighbor in $\mathcal{C}_E(X)$.
- We do not have ∂X x torno 1 $=\partial \mathcal{C}_E(X)$. We thus differentiate two notions: the Internal and the External borders.
	- P belongs to the internal border of X p-connected iff:

$$
P \in X \text{ and } \exists P' \in V_q(P) \cap C_E(X)
$$

where q is the connectedness of the complementary of $X.$ P belongs to the external border of X p-connected iff:

> $P \in \mathcal{C}$ $_E(X)$ and $\exists P' \in V_p(P) \cap X$

Jordan's Theorem

Any simple closed curve ∂X divide the whole space in two domains: one
interior domain W and ane external and $\mathcal{C}(V)$ aseb domain being connectively interior domain W and one external one $\mathcal{C}_E(X)$, each domain being connected.

Discrete Jordan theorem

Property:

- Within a square lattice any 4 connected path (resp. 8 connected path) closed and simple separate the space in two 8-connected (resp. 4connected) components: the interior and the exterior.
- Within a triangular lattice, any 6 connected closed simple path separate the space in two 6 connected components: the interior and the exterior.

Donc:

Examples of borders

 \bullet

Internal Border 4 connected 8 connected 6 connectedExternal Border 8 connected 4 connected 6 connected

 \bullet

 \bullet

 \bullet

 \bullet

 \bullet

 \bullet

Convexity and discrete spaces

The digitisation may involve a loss of the convexity defined within \mathbf{R}^2 .

GREYC⁷⁵

Discrete spaces and distances

- Within \mathbb{R}^2 the distance between two points is the length of the line segment joining these two points.
- Within∠ \mathbb{Z}^2 the distance between two points of \mathbb{Z}^2 is the minimal length of the paths joining the two points.
- Length of the path: Nb edges $=Nb$ points (-1 if the path is open)
- Squared lattice
	- ■4 connected lattice: vertical and horizontal edges,
	- 8 connected lattice: vertical and horizontal edges together with ⁴⁵ ◦edges.
- \blacksquare triangular lattice
	- 6 connected lattice: edges with an angle of 60° .

Distances : Examples

GREYCLA

Unicity of the discrete distance

GREYC⁷⁵

The distance is defined without ambiguity BUT the shortest path is usuallynot unique (Graph property).

Kovalevsky's Topology

- Discrete representation of R^2
	- **Tessellations**
	- Regular tessellations of the plane.
	- Recursive tessellation.
	- Tessellation and lattice of R^2
	- Topological characterisation of lattices
- Discrete spaces
- Kovalevsky's Topology
	- Topology,
	- **Finite Topology,**
	- Cellular Complexes,
	- Theorem : Cellular complexes and topology,
	- Star,
	- Paths, connectedness, Image modeling p. 29/41

Let X be any set and let T be a family of subsets of X. Then T is a topology on X iff:

- 1. Both the empty set and X are elements of $\mathcal T,$
- 2. Any union of arbitrarily many elements of ${\cal T}$ is an element of ${\cal T},$
- 3. Any intersection of finitely many elements of ${\cal T}$ is an element of ${\cal T}.$

If $\mathcal T$ is a topology on X, then :

- the pair (X, \mathcal{T}) is called a topological space, and
- the elements of $\mathcal T$ are called the open sets of $(X, \mathcal T).$

Topology (2/2)

Neighborhood filter:

 $\mathcal{V}(x) \in \mathcal{P}(E)$ is a neighborhood filter of x iff:

1. Any over set of a neighborhood of x is a neighborhood of x .

 $\forall (V, W), V \in \mathcal{V}(x), V \subset W \Rightarrow W \in \mathcal{V}(x)$

2. The intersection of two neighborhood of x is a neighborhood of x

 $\forall (V, W)V \in \mathcal{V}(x), W \in \mathcal{V}(x) \Rightarrow V \cap W \in \mathcal{V}(x)$

- 3. Any neighborhood of x contains $x: \forall V \in V(x) \Rightarrow x \in V$
A Feg any $V \in \mathcal{V}(x)$ it exists $U \in \mathcal{V}(x)$ $U \subset V$ such that L
- 4. For any $V \in V(x)$, it exists $U \in V(x)$, $U \subset V$ such that V is a neighborhood of any point in $U.$

 $\forall V \in \mathcal{V}(x), \exists U \in \mathcal{V}(x), U \subset V; \forall y \in U, V \in \mathcal{V}(y)$

Both definitions of ^a topology are compatibles.

GREYC⁷

GREYC¹⁵

Finite Topology:

- A finite topological space (E, \mathcal{T}) has a finite number of open sets.
- **Remark: Within a finite topological space any intersection or union of** open sets is finite. Therefore, any intersection or union of open setsdefines an open set.

Neighborhood :

The intersection of all open sets containing $e \in E$ is an open set. It's the smallest neighborhood containing e (let us note it $V(e)$)

Cellular Complexes

A cellular complex $C = (F, B, dim)$ is defined by a set F and:

A partial order relationship B included in $F \times F$ and called the bordering
(express) valationship (or face) relationship.

> $(e_1, e_2) \in B$ reads e_1 $_1$ is a border (or a face) of e_2 .

One function dim from F to N such that: If $(e_1, e_2) \in B$ then $dim(e_1) < dim(e_2)$.

If Idea: We take into account all the elements of a tessellation.

Squared tessellation Hexagonal tessellation Triangular tesselation

Image modeling – p. 33/41

Notations (Jean Françon)

Elements of dimension 2 are called *^pixels*

Elements of dimension 1 are called *lignels*

Elements of dimension 0 are called *pointels*

Theorem (1)

A topological space (E, \mathcal{T}) is a T_0 space iff:

 $\forall (x,y) \in E^2 \, \exists U \in \mathcal{T} \, | \, (x \in U \text{ and } y \not\in U) \text{ or } (x \not\in U \text{ and } y \in U)$

Any T_0 finite topological space (E,\mathcal{T}) is a cellular complex

- I I dea of the proof: we consider $C = (E, B, dim)$
- $(e_1,e_2) \in B$ iff:

$$
e_2 \neq e_1, e_2 \in V(e_1) \text{ and } e_1 \notin V(e_2)
$$

■ The function dim is defined by:

$$
dim(e) = (\max_{e' \in E} |V(e')|) - |V(e)|
$$

Theorem (2)

GREYC⁷⁵

- for any finite cellular complex $C = (E, B, dim)$, one may define a topology T compatible with C .
	- Idea of the proof:

$$
S \subset E \in \mathcal{T} \Leftrightarrow \forall e \in S, \forall e', (e, e') \in B \, e' \in S
$$

One open set contains all the elements that it borders.

is open

 $-$ • $-$ is not.

Let $C = (E, B, dim)$ a cellular complex, the open star of one element $e \in E$ (denoted by $St(e,C)$) is the set of elements bordered by $e.$

$$
e' \in St(e, C) \Leftrightarrow (e, e') \in B
$$

we got $St(e, C) = V(e)$ (smallest neighborhood containing e))

Using ^a squared tessellation:

$$
\blacksquare St(\blacksquare, C) = \blacksquare;
$$

$$
St(\blacksquare, C) = \blacksquare \blacksquare
$$

$$
\blacksquare St(\bullet, C) = \begin{array}{c|c} \blacksquare & \blacksquare & \blacksquare \\ \hline \rule{0.1cm}{0.2pt} \blacksquare & \bullet & - \end{array}
$$

Paths, connectedness

Paths:

A sequence $P=e_1,\ldots, e_n$ called ^a path iff: $_n$ within a cellular complex $C = (E, B, dim)$ is

$$
\forall i \in \{1, \dots, n-1\} \qquad (e_i, e_{i+1}) \in B \text{ or } (e_{i+1}, e_i) \in B
$$

$$
\Leftrightarrow e_i \in St(e_{i+1}, C) \text{ or } e_{i+1} \in St(e_i, C)
$$

P will be called closed iff $e_1 = e_n$.

Connectedness :

One set X of a cellular complex is said to be connected iff any couple pf algebra in X elements e,e \prime in X may be connected by a path included in X.

Adherence, Interior

Adherence : The adherence of X is the set of elements $e \in E$ whose star intersect X

$$
e \in \overline{X} \Leftrightarrow St(e, C) \cap X \neq \emptyset
$$

Interior :

The interior of X is the set of elements whose star is included in X.

$$
e \in \overset{\circ}{X} \Leftrightarrow St(e, C) \subset X
$$

GREYC⁷

Boundary

e is called a border point iff his star intersect simultaneously X and $\mathcal{C}_E(X)$.

 $e \in \partial X \Leftrightarrow St(e, C) \cap X \neq \emptyset$ and $St(e, C) \cap C_E(X) \neq \emptyset$

Remark: We have,

$$
\partial X = \overline{X} \cap \overline{\mathcal{C}_E(X)} = \overline{X} - \overset{\circ}{X}
$$

Boundaries : Example

Definition of regions of a single pixel,

Encoding of the lignels of an $n \times m$ image by an $(n + 1) \times (m + 1)$ array.