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Topics of the lecture

GREYCE®
Segmentation and Structural Pattern Recognition.
® How may we encode and build partitions
m Basic properties,
m Non hierarchical encoding,
m Hierarchical encoding.

®m How to relate two partitions
m Algorithmic methods
m Optimisation methods.
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Discrete Geometry : Plan (1/2)

GREYCE®
m Discrete representation &f
m Tessellations
m Regular tessellations of the plane.
m Recursive tessellation.
m Tessellation and lattice @f?
m Topological characterisation of lattices

m Discrete spaces
= Neighborhood
m Paths
m Connected sets
m Discrete paradoxes
m Borders of a set in a discrete space
m Convex set in a discrete space
m Distances and discrete spaces.
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Plan (2/2)

GREYCE®

m Kovalevsky’s Topology.

= Finite Topology,

m Cellular Complex set

®m Theorem: Cellular complex sets and topology

m Star

m Paths, connectedness

m adherence, Iinterior

m Border
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Discrete modeling oR?

GREYCE®
m Tessellation methods A tessellation or tiling of the plane is a colledfo
plane figures that fills the plane with no overlaps and no gaps using
Isometry.
An isometry is a transformation of the space which keeps shape’s leng
and angles. Rotations, translations, axial symmetry symmetry are the
plane’s iIsometry.
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Tesselations et Sensors

GREYCE®

m Map to each sensor its set of closest points.

y
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Reqgular tesselation (2)

Only 3 possible solutions iR? :

i

GREYCE®

Triangular tessellation Square tessellation Hexagonal tessellation

(3)

(4)

(6)
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Regular tessellation : Demonstration (1)

GREYCE®

® n : nb sides of a polygon,
= s : number of polygons incident to /

one vertex,
= sides of equal lengths = 2 “
)

o
m Sum of the angles of a triangle:
B+2a=m

(n—2>
—S =T
2n

® Turning around a vertex.2a = 2«

200 S

2n

n— 2

— S =T = § =
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Regular Tesselation : Demonstration (2)

— S =T = §

GREYCE®

2N
n— 2

Forn > 7, s < 3 = solutions only fom < 7.

Regular Polygons

Number of sides r

| Nb polygons incident to one verte

Equilateral Triangle 3 6
Square 4 4
Hexagon 6 3
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Recursive tesselations

GREYCE™
A recursive tesselation is a tesselation where each polygon may be decom
Into polygons of a same but with a lower size.

SN\

Square recursive Triangular recursive
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Tesselations/Lattices

GREYCE®
m Given a tesselation, we build its associated lattice by locating one ipoin
each polygon and by connecting any two points whose associated poly
share a side.

e e Sy ) WW
N

Square tesselation hexagonal tesselation triangular tesselation
Square lattice Triangular lattice Hexagonal lattice

m This is a particular case of the notiondtial Graph
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Sguare tesselation and 8-connected lattice

GREYCE®

m Lattice defined for a square tesselation.

m Connect any two vertices of the lattice whose associated squares are
Incident by a sid®r a vertex.

m Remark: The lattice is no more a planar graph.
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Discret Spaces

GREYCE®
m Discretization of the spade’
m Tesselation methods,
m Regular tessellation of the plane,
m Recursive tessellation,
= lattices ofR?,
m Topological characteristics of lattices.

m The discrete space
= Neighborhoods,
m Paths,
m Connectedness,
m Discrete paradoxes,
m Border of a set in a discrete space
m Convex sets Is a discrete space,
m Distances and discrete spaces.

Image modeling — p. 13/41



4 and 8 Neighborhoods

GREYCE®

m 4 connected lattice

V4(i>j) — {(i_17j)7(i7j)7(i+17j)7(i7j+1)}
) = A ) eN[li=d|+1j -4 =1}

NS
N
.
o
N——"
|

m 8 connected lattice

‘/8(27]) — {(2_17]_1)7(2_17])7(2_17]+1)7(27]_1)7(27]>7(27]—|—]
(i+1,7-1),0+1j),0@+1,j+1);
V(i,j) = {(,5) e N*[max{|i = ¥'],1j = j'I} = 1}

01 2 3 4 5

my (l) —m+

Vg(m) =m+m+

oa b~ W N BEFL O
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Triangular Neighborhood

GREYCE®

® The indexes are relative to the parity of the lines:
mIf jis even:

V(i,j) =1(=17-1),(,5=1),(0=1,7), i +1,7), (i =1,7+1),(5, 5+ 1)}

mIf jis odd:

1 2 3 4 5

\><




Hexagonal neighborhood

GREYCE®

m V5: sides
m Vg Sides(2)
m /1o: Sides + vertices

3 connexite 6 connexite 12 connexit
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Paths

GREYCE®
m A path is sequence of vertices of a lattice such that each vertex (excep
last one) belongs to the neighborhood of the next vertex in the sequent

PZPl...,Pn,ViE{1,...,71—1}P7;€V(Pz'_|_1)

m In graph theory the above definition corresponds Wwak. However, both
definitions will coincide in the following since we will only congdsimple
paths which add the following additional constraint: each vertex (except
first and last one) appears only once.

m If the last point is equal to the first one the path is say to be closed.
® The notion of path is relative to the type of lattice and to the notion o
connectedness defined on it. We will speak of:
® 4 or 8 connected paths on a square lattice,
® 6 connected paths on a triangular lattice,
m 3,9 and 12 connected paths for an hexagonal lattice.
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Examples of paths

GREYCE®

L/

lattice triangular hexagonal sguare sguare
Path 6 connected 9 connected 8 connected 4 connected
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Connected sets

A
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GREYCE
01 2 3 4 5

o~ W NPEF O

m Définition :
A set X of the lattice Is called:-connected iff for any coupleP, ) of
points of X it exists onec-path withinX which joins P and(@

V(P,Q)e X?3P=P,....P,=Q|Vie{l,... ntPe X

® The notion of connectedness is thus relative to the lattice and to the
connectedness chosen on it. One will speak abaiior 8 connected sets.

O W|th|n the Image Processmg/AnaIyS|s framework a connected set of pl
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Paradoxes of the 4 and 8 connectedness

GREYCE®

4 connectedness 8 connectedness

(ES

- SN

i \
JHH )

not connected Connexion of the complementary set

m Either two connected components “2and the complementary,

m Either a single connected component “‘@and its complementary.

®m One usual convention consists to use one connectedness for the objec
the other for the complementary. We then got:

m Either 2 connected components for the object and one for the
complementary,

m Either one connected component for the object and 2 for the
complementary.
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border of a discrete space

GREYCE®

m Using usual topological defél.X = X — X

m Pb : we do not really have a topology. We thus say:
One point belongs to the border of a sép-connected iff it haves one
neighbor InCr(X).

®m We do not havé X = 0Cr(X). We thus differentiate two notions: the
Internal and the External borders.

® P belongs to the internal border af p-connected Iff:
P e X and3iP' € V, (P)NCg(X)

whereq Is the connectedness of the complementary of
m P belongs to the external border &f p-connected Iff:

PeCp(X)and3iP e V(P)NX
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Jordan’s Theorem

GREYCE™®
Any simple closed curvéX divide the whole space in two domains: one
interior domaini’ and one external on&; (X ), each domain being connectec
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Discrete Jordan theorem

GREYCE®
® Property :

= Within a square lattice any 4 connected path (resp. 8 connected pat
closed and simple separate the space in two 8-connected (resp. 4
connected) components: the interior and the exterior.

= Within a triangular lattice, any 6 connected closed simple path sepa
the space in two 6 connected components: the interior and the exte

m Donc:

Objet Internal Border| External border
4 connected 4 connected 8 connected
8 connected 8 connected | 4 connected
6 connected 6 connected 6 connected
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Examples of borders

GREYCE®
1 2 3 4 5

2
T TS )
o | LTI, ! P c
Internal Border 4 connectec 8 connected 6 connected
External Border 8 connecteo 4 connected 6 connected
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Convexity and discrete spaces

GREYCE®

SRR

m The digitisation may involve a loss of the convexity defined witRin
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Discrete spaces and distances

GREYCE®

= Within R? the distance between two points is the length of the line segn
joining these two points.

= Within 2% the distance between two points.sf is the minimal length of
the paths joining the two points.

m Length of the path: Nb edges =Nb points (-1 if the path is open)

m Squared lattice
® 4 connected lattice: vertical and horizontal edges,
m 8 connected lattice: vertical and horizontal edges together4gtth
edges.
m triangular lattice
® 6 connected lattice: edges with an angl&of.
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Distances : Examples

SRy s | eyt

Squared lattice triangular lattice

GREYCE®

2

dz,y) = 2vb~ 4.46
de(z,y) = 6

§ ds(x,y) = 4
dy(z,y) = 24/(2) +2~4.82
de(z,y) = 5
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Unicity of the discrete distance

® The distance is defined without ambiguity BUT the shortest path islysu
not unique (Graph property).

dy dg
= = = y | | y&y | |
Squared lattice Triangular lattice
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Kovalevsky’s Topology

GREYCE®
m Discrete representation &f
m Tessellations
m Regular tessellations of the plane.
m Recursive tessellation.
m Tessellation and lattice @f?
m Topological characterisation of lattices

m Discrete spaces

m Kovalevsky’s Topology

m Topology,

® Finite Topology,

m Cellular Complexes,

®m Theorem : Cellular complexes and topology,
m Star,

m Paths, connectedness,
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Topology (1/2)

GREYCE®
Let X be any set and lef’ be a family of subsets of X. Theh is a topology on
X Iff:
1. Both the empty set and X are elementg of
2. Any union of arbitrarily many elements @f is an element of’,
3. Any intersection of finitely many elements®fis an element of.

If 7 is a topology on X, then:
m the pair(X, 7) is called a topological space, and
m the elements of are called the open sets f, 7).
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Topology (2/2)

GREYCE®

Neighborhood filter:

mV(z) € P(F) is a neighborhood filter of iff:
1. Any over set of a neighborhood ofis a neighborhood of.

VIV,W),VeV(x),VCW=W e V()
2. The intersection of two neighborhood:ofs a neighborhood of
VIV, W)V € V(x), W eV(x)=VNW e V()

3. Any neighborhood of containse: VV € V(z) =z €V

4. ForanyV € V(x), itexistsU € V(z),U C V such that’ Is a
neighborhood of any point ify.

VYV eV(zx),aU € V(x),U C V;Vy e U,V € V(y)
Both definitions of a topology are compatibles.
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Finite Topology
® Finite Topology :
m A finite topological spaceFE, 7) has a finite number of open sets.

® Remark: Within a finite topological space any intersection or union c
open sets is finite. Therefore, any intersection or union of open sets
defines an open set.

m Neighborhood :
The intersection of all open sets containing FE Is an open set. It's the
smallest neighborhood containiaglet us note itV (e))
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Cellular Complexes

GREYCE®

A cellular complexC' = (F, B, dim) Is defined by a sef’ and:

m A partial order relationshig included inF' x £ and called the bordering
(or face) relationship.

(e1,e2) € Breadse; Is a border (or a face) oh.

m One functiondim from F' to N such that:
If (e1,e2) € Bthendim(ey) < dim(es).

m Ildea: We take into account all the elements of a tessellation.
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Notations (Jean Francon)

® Elements of dimension 2 are callpkels

® Elements of dimension 1 are callegnels

® Elements of dimension O are callpdintels

pixel

ointel
‘p

lighel

GREYCE®
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Theorem (1)

GREYCE®

m A topological spaceFE, 7 ) is aTj space Iff:

V(z,y) € E*3U e T|(x € Uandy ¢ U) or (x ¢ U andy € U)

m Any Ty finite topological spacéF, 7) is a cellular complex

m |[dea of the proof:
m we consideC' = (E, B, dim)
o (61, 62) c B Iff:

€9 7§ €1,€62 € V(el) andel Q V(eg)
m The function dim is defined by:

dim(e) = (max [V(e')[) — [V (e)

e'ck

Image modeling — p. 35/41



Theorem (2)

GREYCE™
m for any finite cellular complexX’ = (£, B, dim), one may define a topolog
7 compatible withC'.

m |[dea of the proof:

SCEcT &Vec S,Ve,(e,e)e Be'e S

One open set contains all the elements that it borders.
®mimiS Open
m— e — IS NOL.
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Star of an element

GREYCE®
LetC' = (E, B, dim) a cellular complex, the open star of one elemeatE
(denoted byst(e, C)) Is the set of elements bordered dy

e’ € St(e,C) & (e,€') € B

m we gotSt(e,C') = V(e) (smallest neighborhood containiap
m Using a squared tessellation:

lSt(-,C):.;
st(,c) = I

H B
mSte,. ()= — e —
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Paths, connectedness

GREYCE®

m Paths :
A sequence’® = ey, ..., e, Within a cellular complexC' = (E, B, dim) IS
called a path Iff:

Vi € {1, R 1} (6@,6@4.1) c B or (ez'_|_1,€7;) e B
& e € St(ei_|_1, C) Olre;11 € St(ei, C)

m P will be called closed ifle; = ¢,,.

m Connectedness :
One setX of a cellular complex is said to be connected iff any couple pf
elements;, ¢’ in X may be connected by a path includedin
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Adherence, Interior

GREYCE®
m Adherence:
The adherence of Is the set of elementse E whose star intersect

ec X & Stle,C)NX #0

m Interior :
The interior of X Is the set of elements whose star Is included’in

ee)o(@St(e,C’)CX

- (@)

X X X
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Boundary

GREYCE®

m c Is called a border point iff his star intersect simultaneouslgndCr (X).
e € 0X & St(e,C)NX # PandSt(e,C)NCr(X) # 0

m Remark: We have,

X =X NCp(X) =X — X

@) o) o) o) . . o) o) o)
- @)

X X X 0X
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Boundaries : Example

GREYCE®

m Definition of regions of a single pixel,
m Encoding of the lignels of an x m image by ann + 1) x (m + 1) array.
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