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Partition

◮ An image’s partition is defined as a set of regions that
collectively cover the entire image and whose intersection of
any couple of region is empty.

P = {R1, . . . ,Rn}
∀i 6= j Ri ∩ Rj = ∅
P =

⊔n
i=1 Ri ,
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Partitions and Kovalevsky’s Topology

◮ Maximum label rule : Let l be a real function defined over all
cells of maximal dimension.

∀e ∈ C dim(e) < dimmax l(e) = max
e ′ ∈ St(e, C ),
dim(e ′) = dimmax

l(e ′)

◮ Example ¤ > > >

{R1, . . . ,Rn}
⋃n

i=1 ∂Ri
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Structuring boundaries

◮ Node: pointel whose star contains at least 3 different labels.

∀e ∈ C , dim(e) = 0, est un noeud ⇔ |l(St(e, C ))| ≥ 3

◮ Segment : maximal sequence of bordering pointels/lignels
between two nodes.
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Adjacency

◮ Two regions are said adjacent if they share at some boundary
elements of dimension 1 (i.e. at least one segment).

◮ Regions and are adjacent in the three cases bellow:
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1 segment 2 segment inside

◮ The merging of two adjacent connected set of pixels (regions)
produces a connected set of pixel..
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Connected component

◮ A connected component of a partition is a connected set of
regions inside one region of the partition.

◮ Examples :
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Segmentation and Partitions
◮ Segmentation: Aims to define a partition P = {R1, . . . ,Rn}

which satisfy some criteria:
◮ Homogeneity of each region:

∀i ∈ {1, . . . , n}, P(Ri ) = vrai ,

◮ Minimisation of an energy:

P = argminP∈PE (P)

◮ Binary partition: Find S which minimises:

h(S) =

∫

∂S
w(λ)dλ

min
(

∫

S
w ′(x , y)dxdy ,

∫

Ω−S
w ′(x , y)dxdy

)

If w = w ′ = 1 et Ω = R
2, it is equivalent to find the form

whose perimeter is minimal and which surrounds a maximal
volume (i.e. the disc). Isoperimetric problem.

◮ . . .
8 / 32
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Segmentation according to Horowitz

Definition
{R1, . . . ,Rn} is a segmentation of I according to an homogeneity
criterion P iff:

1. {R1, . . . ,Rn} defines a partition of I : I =
⊔n

i=1 Ri

2. in sets connected (regions) ∀i ∈ {1, . . . , n} Ri is connected

3. and homogeneous ∀i ∈ {1, . . . , n} P(Ri ) = true

4. and which is maximal for these properties

∀i ∈ {1, . . . , n}2

(

i 6= j

Ri adj Rj

)

P(Ri ∪ Rj) = false
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Segmentation and partitions

◮ Segmentation algorithms need:
1. to extract information from partitions and to
2. modify them.

◮ “Geometrical” information: Any information on one region
that may be deduced solely from the region (without using
information from the partition).

1. Set of pixels of one region (mean, variance, shape,. . . ),
2. ownership of a point,
3. Border. . .

◮ “Topological” information: Any information that takes sense
only when considering partitions.

1. Border between two regions,
2. Set of regions adjecent to a region,
3. Set of connected components inside a region,
4. region surrounding a connected component. . .

10 / 32
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Array of labels
Run Length Encoding
Medial axis encoding
Borders

Array of labels
0 1 2 3 4 5
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◮ Advantages:
◮ Extremely simple,
◮ Access to most of geometrical information

◮ Drawbacks:
◮ No straightforward access to information related to boundaries
◮ Not compact

◮ Remark : Levels sets : sgn(φ(x)) : 2 labels.
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Array of labels
Run Length Encoding
Medial axis encoding
Borders

Run Length Encoding
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◮ Advantages:
◮ Compact data structure,
◮ Straightforward retrieval of the set of pixels,

◮ Drawbacks
◮ No bordering information,
◮ Not so easy to update.

12 / 32



Presentation
Partitions

Segmentation
Geometrical models
Topological Models

Array of labels
Run Length Encoding
Medial axis encoding
Borders

Medial axis transform

◮ BB-MAT (or DB-MAT) largest Block (or Disc) inside a region.

◮ Advantages:
◮ Compact representation,
◮ Medial Axis : Homotopic transformation from a 2D set to a

1D one which preserves information about the shape of the
region ⇒ Shape Recognition.

◮ Drawbacks
◮ Medial axis transform not continuous ⇒ Sensible to small

perturbations of the shape.
13 / 32
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Medial axis encoding
Borders

Borders

◮ Advantages :
◮ Information about borders,

◮ Drawbacks (∂ pixel):
◮ The location of the border is ambiguous.
◮ Redundant information.
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Region Adjacency Graph

◮ G = (V , E ) : A simple graph

◮ Without loops,
b

◮ Without double edges,
b b

◮ V set of vertice. One vertex per region
◮ E set of edges. One edge per adjacency relationship between

regions.

15 / 32



Presentation
Partitions

Segmentation
Geometrical models
Topological Models

Simple graphs
Dual Graphs
Combinatorial maps

Region Adjacency Graph
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Merge of vertices

◮ Select one edge encoding the adjacency between both regionyy y yPPPP

³³³³

◮

◮

◮
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Merge of vertices

◮ Select one edge encoding the adjacency between both regionyy y yPPPP

³³³³

◮ Contract the edge (Identify both vertices, remove the edge)
◮

◮

y y y´́ QQ
QQ´́
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Merge of vertices

◮ Select one edge encoding the adjacency between both regionyy y yPPPP

³³³³

◮ Contract the edge (Identify both vertices, remove the edge)
◮ Remove any loops that may have appeared
◮

y y y´́ QQ
QQ´́

16 / 32



Presentation
Partitions

Segmentation
Geometrical models
Topological Models

Simple graphs
Dual Graphs
Combinatorial maps

Merge of vertices

◮ Select one edge encoding the adjacency between both regionyy y yPPPP

³³³³

◮ Contract the edge (Identify both vertices, remove the edge)
◮ Remove any loops that may have appeared
◮ Remove any double edge that may have appeared

y y y
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Limits of simple graphs

◮ Soit G = (V , E ),
◮ e = (u, v) ∈ E ⇒ Ru and Rv have at least one common border
◮ ⇔ Ru and Rv may be merged.

y y y
◮ Not so easy to use for boundary based criteria or criteria using

boundary information (amoung other features) iq q .
◮ Solution : Adds edges. But. . .
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Limits of simple graphs: Illustration

yy y yPPPP

³³³³

◮ Identify two adjacent vertice, remove the edge,

◮ Remove loops,

◮ Remove double edges.

y y y´́ QQ
QQ´́

◮ Redundant double edges “ surround” nothing.
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Dual Graphs: Definition

◮ Dual Graph model: (G , G )

◮ G = (V , E ) non simple,
◮ © encode image background

◮ G = (V , E )
◮ V : one vertex of G per face of G .
◮ E : Each e ∈ E cuts one and only one edge of E ..

y y y
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Dual graphs: properties

◮ The dual operator is an involution :G = G

◮ We have a 1 − 1 correspondance between the edge of G and
the ones of G

◮ A loop of G is a bridge of G and vice versa.

◮ Any contraction in G implies a removal in G

◮ Any removal in G implies a contraction in G

20 / 32
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Dual graphs: properties

◮ If the vertices of G encode the regions then the vertice of G

encode the intersection of borders (Nodes) and vice versa.

◮ Edges encode the borders (segments) of the partition.
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Characterising double edges

yy y yPPPP

³³³³
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Characterising double edges

y y y
i

´́ QQ
QQ´́
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Characterising double edges

◮ A double edge is said to be redundant if it belongs to a dual
vertex of degree 2.

y y y
i

´́ QQ
QQ´́
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Characterising double edges

◮ A double edge is said to be redundant if it belongs to a dual
vertex of degree 2.

y y y
i

◮ We should thus remove all degree 2 vertices of G .
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Processing of loops

◮ A loop is said to be redundant if it defines a dual vertex of
degree 1.

y y i

y i
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Merging two regions

◮ Contract in G one of the edge encoding the adjacency
between both regions,

◮ Remove the corresponding edge in G , yy y yPPPP

³³³³

↓ ↓

w w w
g

´́ QQ
QQ´́

◮ Contract in G one of the two edges incident to vertice f such
that d(f ) ≤ 2.

◮ Remove corresponding edges in G (loops, double edges).
23 / 32
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Merging two regions

Dual Graphs Simple Graphs (RAG)

Step 1 edge contraction edge contraction

Step 2 removal of loops surround-
ing f ∈ V such that
d(f ) = 1

removal of all loops

Step 3 removal of double edges
surrounding f ∈ V such
that d(f ) = 2

removal of all double edges
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Conclusion

◮
iq q Simple and dual graphs are essentially built using a

bottom-up construction scheme.

◮ Compared to simple graphs, dual graphs allow to:
◮

iq q associate one edge to each connected boundary between 2
regions (segment),

◮
iq q characterise inside relationship.

◮ But:
◮

iq q Dual graphs do not fully use the properties of the plane
embedding.

◮
iq q Does not allow to characterize locally inside relationships.

24 / 32
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Conclusion

◮ What we may want:

1. A model that may be built either bottom-up or top-down,
2. which use a single data structure,
3. which provide a local characterisation of inside relationships.

◮ Does it exists such a model ???
◮

iq q
Yes.
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Combinatorial maps

◮ Basic defs
◮ Set D
◮ Permutation : bijective application from D to D

◮ Orbit of b in D according to π

< π > (b) = {b, π(b), π2(b), . . . , πn(b)}

with n ≤ |D|.
◮ Cycles Decomposition: π

∗(b) restriction of π to < π > (b) is
a permutation from < π > (b) to < π > (b).

π = π
∗(b1) . . . , π

∗(bp)

25 / 32
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Combinatorial maps: Edges

◮ G = (D, σ, α)

y y y
i

◮ Each edge is decomposed in two half edges called darts.

◮ Two darts of a same edge are connected by an involution α :
α(1) = −1, α(−1) = 1
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Combinatorial maps: Edges

◮ G = (D, σ, α)

y y y
i

◮1

◮
−1

◮3◮4

N−5N5

H
−6

H
6

◭
−3◭

−4◭
−2

◭
2

D = {−6, . . . ,−1, 1, . . . , 6}
∀b ∈ D α(b) = −b

α = (1,−1)(2,−2)(3,−3)(4,−4)(5,−5)(6,−6)
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Vertices

y y y
i

◮1

N−5

◭
−3

H
−6

◮ Vertices are encoded by the cycles of σ.

◮ σ∗(b) encode the sequence of darts encountered by turning
with a positive orientation around the vertex containing b.

σ∗(1) = (1,−5,−3,−6)
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Dual combinatorial map

◮ Si G = (D, σ, α) alors G = (D, ϕ = σ ◦ α, α).

◮ Les cycles de ϕ codent les faces de la carte duale (et donc la
carte duale).

ϕ = (−2,−1,−5)(−4, 5,−3)(4, 3,−6)(2, 6, 1)

y y y

i
◮
−1

◮
1

◭
−2

◭
2

◮
−3

◭
−4

◭4

H −5

H−6

N6

◮3

N5
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Infinite faces

◮ If σ follows the positive orientation, all cycles of ϕ(faces) but
one are traversed with the negative (clockwise) orientation.

◮ The cycle of ϕ traversed with a positive orientation is called
the Infinite face. It encodes the complement of the connected
component encoded by the combinatorial map. (Vertex i).
The other faces are qualified of finite by reference to the
domain they’re surrounding.

y y y i
◮
1

◭
−2

◮
3

◮
−3

◭
4

◭
−4

H 5

N−5

H 6

N−6

◭
−1

N
2

◮
−1

◭
2

ϕ = (1, −6, −3, −5)(3, −4)(−2, 5, 4, 6)(−1, 2)
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Infinite faces

◮ We have one infinite face per connected component

f ∞1

f ∞2

f ∞3

◮ We must encode the inside relationships between these
components.
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An explicit encoding of inside relationships

◮ for any finite face f :, fille(f ) infinite faces inside f

◮ For any infinite face f ∞ :mere(f ∞) finite face which
contains it (limits its domain).

f
∞

3

f
∞

2f
∞

1

f

fille(f ) = {f ∞1 , f ∞2 , f ∞3 }
mere(f ∞1 ) = mere(f ∞2 )

= mere(f ∞3 )
= f

31 / 32



Presentation
Partitions

Segmentation
Geometrical models
Topological Models

Simple graphs
Dual Graphs
Combinatorial maps

An explicit encoding of inside relationships

◮ for any finite face f :, fille(f ) infinite faces inside f

◮ For any infinite face f ∞ :mere(f ∞) finite face which
contains it (limits its domain).

f
∞

3

f
∞

2f
∞

1

f

fille(f ) = {f ∞1 , f ∞2 , f ∞3 }
mere(f ∞1 ) = mere(f ∞2 )

= mere(f ∞3 )
= f

31 / 32



Presentation
Partitions

Segmentation
Geometrical models
Topological Models

Simple graphs
Dual Graphs
Combinatorial maps

An explicit encoding of inside relationships

◮ for any finite face f :, fille(f ) infinite faces inside f

◮ For any infinite face f ∞ :mere(f ∞) finite face which
contains it (limits its domain).

◮ p : The location of a newly Inserted connected component is
not handled by the combinatorial map model ⇒ Requires
geometrical information ⇒ Combination Combinatorial
maps/geometrical models.

http://www.greyc.ensicaen.fr/ luc/ARTICLES/ecole d ete2.odp
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Combinatorial maps: conclusion

◮ Implicit encoding of the dual

◮ Explicit encoding of the orientation

◮ Associated to inter-pixel boundaries, maps allow to:
◮ Efficient updates of the partition encoding under split and

merge operations,
◮ Explicit encoding of inside relationships,
◮ Efficient access to both geometrical and topological

information

http://www.greyc.ensicaen.fr/∼luc/ARTICLES/ecole d ete2.odp

◮ May be extended to higher dimensions (3D,4D,. . . nD) at the
price of a much higher memory cost.
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