Partitions & non hierarchical models

Luc Brun

Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen (GREYC) GREYC¹⁵

1 / 32

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @

Plan

[Partitions](#page-2-0)

[Segmentation](#page-7-0)

[Geometrical models](#page-10-0)

[Array of labels](#page-10-0) [Run Length Encoding](#page-11-0) [Medial axis encoding](#page-12-0) [Borders](#page-13-0)

[Topological Models](#page-14-0)

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Partition

 \triangleright An image's partition is defined as a set of regions that collectively cover the entire image and whose intersection of any couple of region is empty.

$$
\mathcal{P} = \{R_1, \ldots, R_n\}
$$

\n
$$
\forall i \neq j \ R_i \cap R_j = \emptyset
$$

\n
$$
P = \bigsqcup_{i=1}^n R_i,
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 900

3 / 32

Partitions and Kovalevsky's Topology

 \triangleright Maximum label rule : Let I be a real function defined over all cells of maximal dimension.

$$
\forall e \in C \dim(e) < \dim_{\max} l(e) = \max_{e'} \lim_{e'} \in St(e, C), \qquad l(e')
$$
\n
$$
\dim(e') = \dim_{\max}
$$

Structuring boundaries

▶ Node: pointel whose star contains at least 3 different labels.

 $\forall e \in C$, $dim(e) = 0$, est un noeud \Leftrightarrow $|I(St(e, C))| \geq 3$

 \triangleright Segment : maximal sequence of bordering pointels/lignels between two nodes.

5 / 32

 2990

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$

Adjacency

- \triangleright Two regions are said adjacent if they share at some boundary elements of dimension 1 (i.e. at least one segment).
- Regions \blacksquare and \blacksquare are adjacent in the three cases bellow:

▶ The merging of two adjacent connected set of pixels (regions) produces a connected set of pixel..

Connected component

▶ A connected component of a partition is a connected set of regions inside one region of the partition.

Segmentation and Partitions

◮ . . .

- Segmentation: Aims to define a partition $\mathcal{P} = \{R_1, \ldots, R_n\}$ which satisfy some criteria:
	- \blacktriangleright Homogeneity of each region:

$$
\forall i \in \{1,\ldots,n\},\ P(R_i)=\text{vrai},
$$

 \blacktriangleright Minimisation of an energy:

$$
\mathcal{P} = \text{argmin}_{P \in \mathbb{P}} E(P)
$$

 \triangleright Binary partition: Find S which minimises:

$$
h(S) = \frac{\int_{\partial S} w(\lambda) d\lambda}{\min\left(\int_{S} w'(x, y) dxdy, \int_{\Omega-S} w'(x, y) dxdy\right)}
$$

If $w = w' = 1$ et $\Omega = \mathbb{R}^2$, it is equivalent to find the form whose perimeter is minimal and which surrounds a maximal volume (i.e. the disc). Isoperimetric problem.

イロト 不優 ト 不重 ト 不重 トー 重

Segmentation according to Horowitz

Definition

 $\{R_1, \ldots, R_n\}$ is a segmentation of *I* according to an homogeneity criterion P iff:

- 1. $\{R_1, \ldots, R_n\}$ defines a partition of *I*: $\bigsqcup_{i=1}^n R_i$ 2. in sets connected (regions) $\forall i \in \{1,\ldots,n\}$ R_i is connected
- 3. and homogeneous $\forall i \in \{1, ..., n\}$ $P(R_i) = true$
- 4. and which is maximal for these properties

$$
\forall i \in \{1, \ldots, n\}^2 \left(\begin{array}{c} i \neq j \\ R_i \text{ adj } R_j \end{array} \right) P(R_i \cup R_j) = \text{false}
$$

Segmentation and partitions

- \triangleright Segmentation algorithms need:
	- 1. to extract information from partitions and to
	- 2. modify them.
- ▶ "Geometrical" information: Any information on one region that may be deduced solely from the region (without using information from the partition).
	- 1. Set of pixels of one region (mean, variance, shape,. . .),
	- 2. ownership of a point,
	- 3. Border. . .
- ▶ "Topological" information: Any information that takes sense only when considering partitions.
	- 1. Border between two regions,
	- 2. Set of regions adjecent to a region,
	- 3. Set of connected components inside a region,
	- 4. region surrounding a connected comp[one](#page-8-0)[nt](#page-10-0)...
E ALLA REPARTS

[Array of labels](#page-10-0) [Run Length Encoding](#page-11-0) [Medial axis encoding](#page-12-0) [Borders](#page-13-0)

Array of labels

- ▶ Advantages:
	- \blacktriangleright Extremely simple,
	- \triangleright Access to most of geometrical information
- ▶ Drawbacks:
	- ▶ No straightforward access to information related to boundaries
	- ▶ Not compact
- Remark : Levels sets : $sgn(\phi(x))$: 2 labels.

[Array of labels](#page-10-0) [Run Length Encoding](#page-11-0) [Medial axis encoding](#page-12-0) [Borders](#page-13-0)

Run Length Encoding

メロメ メ御き メミメ メミメ

12 / 32

 QQ

画

- ▶ Advantages:
	- \blacktriangleright Compact data structure,
	- \triangleright Straightforward retrieval of the set of pixels,
- ▶ Drawbacks
	- \triangleright No bordering information,
	- \triangleright Not so easy to update.

[Array of labels](#page-10-0) [Run Length Encoding](#page-11-0) [Medial axis encoding](#page-12-0) [Borders](#page-13-0)

Medial axis transform

▶ BB-MAT (or DB-MAT) largest Block (or Disc) inside a region.

- ▶ Advantages:
	- \blacktriangleright Compact representation,
	- ▶ Medial Axis : Homotopic transformation from a 2D set to a 1D one which preserves information about the shape of the region \Rightarrow Shape Recognition.
- \blacktriangleright Drawbacks
	- \triangleright Medial axis transform not continuous \Rightarrow Sensible to small perturbations of the shape. イロト イ押ト イヨト イヨト

[Array of labels](#page-10-0) [Run Length Encoding](#page-11-0) [Medial axis encoding](#page-12-0) **[Borders](#page-13-0)**

Borders

メロメ メ都 メメ きょうくぼ メー

14 / 32

 2990

E

- ▶ Advantages :
	- \blacktriangleright Information about borders,
- ► Drawbacks (∂ pixel):
	- \blacktriangleright The location of the border is ambiguous.
	- ▶ Redundant information

[Simple graphs](#page-16-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Region Adjacency Graph

- \blacktriangleright $G = (V, E)$: A simple graph
	- \triangleright Without loops, \Box
	- \triangleright Without double edges, \bigcirc
	- \triangleright V set of vertice. One vertex per region
	- \triangleright E set of edges. One edge per adjacency relationship between regions.

[Simple graphs](#page-16-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Region Adjacency Graph

- \blacktriangleright $G = (V, E)$: A simple graph
	- \triangleright V set of vertice. One vertex per region
	- \triangleright E set of edges. One edge per adjacency relationship between regions.

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Region Adjacency Graph

- \blacktriangleright $G = (V, E)$: A simple graph
	- \triangleright V set of vertice. One vertex per region
	- \triangleright E set of edges. One edge per adjacency relationship between regions.

15 / 32

K ロ ▶ K 個 ▶ K 重 ▶ K 重 ▶ 「重 」 約 9,0

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Merge of vertices

 \triangleright Select one edge encoding the adjacency between both region

16 / 32

 QQ

イロト 不優 ト 不思 ト 不思 トー 温

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Merge of vertices

 \triangleright Select one edge encoding the adjacency between both region

▶ Contract the edge (Identify both vertices, remove the edge) ◮

K ロ ▶ K 個 ▶ K 重 ▶ K 重 ▶ 「重 」 約 9,0 16 / 32

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Merge of vertices

 \triangleright Select one edge encoding the adjacency between both region

- ▶ Contract the edge (Identify both vertices, remove the edge)
- \blacktriangleright Remove any loops that may have appeared

K ロ > K 個 > K 경 > K 경 > 시 경

16 / 32

 Ω

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Merge of vertices

 \triangleright Select one edge encoding the adjacency between both region

- Contract the edge (Identify both vertices, remove the edge)
- Remove any loops that may have appeared
- Remove any double edge that may have appeared

K ロンス 御 > ス ヨ > ス ヨ > 一 ヨ

16 / 32

 Ω

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Limits of simple graphs

- Soit $G = (V, E)$,
	- \triangleright $e = (u, v) \in E \Rightarrow R_u$ and R_v have at least one common border
	- $\triangleright \Leftrightarrow R_u$ and R_v may be merged.

- ▶ Not so easy to use for boundary based criteria or criteria using boundary information (amoung other features) \heartsuit .
- ▶ Solution : Adds edges. But...

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Limits of simple graphs

- Soit $G = (V, E)$,
	- \triangleright $e = (u, v) \in E \Rightarrow R_u$ and R_v have at least one common border
	- $\triangleright \Leftrightarrow R_u$ and R_v may be merged.

- ▶ Not so easy to use for boundary based criteria or criteria using boundary information (amoung other features) \heartsuit .
- ▶ Solution : Adds edges. But...

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Limits of simple graphs: Illustration

- \blacktriangleright Identify two adjacent vertice, remove the edge,
- ▶ Remove loops,
- ▶ Remove double edges.

▶ Redundant double edges " surround" nothing.

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Limits of simple graphs: Illustration

- \blacktriangleright Identify two adjacent vertice, remove the edge,
- ▶ Remove loops,
- \blacktriangleright Remove double edges.

▶ Redundant double edges " surround" nothing.

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Limits of simple graphs: Illustration

- \blacktriangleright Identify two adjacent vertice, remove the edge,
- ▶ Remove loops,
- \blacktriangleright Remove double edges.

▶ Redundant double edges " surround" nothing.

[Simple graphs](#page-14-0) [Dual Graphs](#page-30-0) [Combinatorial maps](#page-51-0)

Dual Graphs: Definition

- \blacktriangleright Dual Graph model: (G,\overline{G})
- \blacktriangleright $G = (V, E)$ non simple,
	- \triangleright \bigcirc encode image background
- \blacktriangleright $\overline{G} = (\overline{V}, \overline{E})$
	-
	-

[Simple graphs](#page-14-0) [Dual Graphs](#page-30-0) [Combinatorial maps](#page-51-0)

Dual Graphs: Definition

 \blacktriangleright $\overline{G} = (\overline{V}, \overline{E})$

- \blacktriangleright Dual Graph model: (G,\overline{G})
- \blacktriangleright $G = (V, E)$ non simple,
	- \triangleright \bigcirc encode image background

[Simple graphs](#page-14-0) [Dual Graphs](#page-30-0) [Combinatorial maps](#page-51-0)

Dual Graphs: Definition

- \blacktriangleright Dual Graph model: (G,\overline{G})
- \blacktriangleright $G = (V, E)$ non simple,
	- \triangleright \bigcirc encode image background
- $\blacktriangleright \overline{G} = (\overline{V}, \overline{E})$
	- $\blacktriangleright \overline{V}$: one vertex of \overline{G} per face of G.
	- ► \overline{E} : Each $\overline{e} \in \overline{E}$ cuts one and only one edge of E..

K ロンス 御 > ス ヨ > ス ヨ > 一 ヨ

19 / 32

 Ω

[Simple graphs](#page-14-0) [Dual Graphs](#page-30-0) [Combinatorial maps](#page-51-0)

Dual Graphs: Definition

- \blacktriangleright Dual Graph model: (G,\overline{G})
- \blacktriangleright $G = (V, E)$ non simple,

▶ ○ encode image background

- $\blacktriangleright \overline{G} = (\overline{V}, \overline{E})$
	- $\blacktriangleright \overline{V}$: one vertex of \overline{G} per face of G.

► \overline{E} : Each $\overline{e} \in \overline{E}$ cuts one and only one edge of E..

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Dual Graphs: Definition

- \blacktriangleright Dual Graph model: (G,\overline{G})
- \blacktriangleright $G = (V, E)$ non simple,

 \triangleright \bigcirc encode image background

- $\blacktriangleright \overline{G} = (\overline{V}, \overline{E})$
	- $\blacktriangleright \overline{V}$: one vertex of \overline{G} per face of G.
	- ► \overline{E} : Each $\overline{e} \in \overline{E}$ cuts one and only one edge of E ..

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

20 / 32

 Ω

イロト 不優 ト 不重 ト 不重 トー 重

Dual graphs: properties

- \blacktriangleright The dual operator is an involution : $\overline{\overline{G}} = G$
- \triangleright We have a 1 1 correspondance between the edge of G and the ones of \overline{G}
- A loop of G is a bridge of \overline{G} and vice versa.
- Any contraction in G implies a removal in \overline{G}
- Any removal in G implies a contraction in \overline{G}

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Dual graphs: properties

- If the vertices of G encode the regions then the vertice of G encode the intersection of borders (Nodes) and vice versa.
- \blacktriangleright Edges encode the borders (segments) of the partition.

20 / 32

 Ω

K ロンス 御 > ス ヨ > ス ヨ > 一 ヨ

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Characterising double edges

イロト イ団 トイモト イモト **E** 299 21 / 32

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Characterising double edges

イロト イ団 トイモト イモト **E** 299 21 / 32

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Characterising double edges

K ロ X K @ X K 경 X X 경 X X 경 299 21 / 32

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Characterising double edges

▶ A double edge is said to be redundant if it belongs to a dual vertex of degree 2.

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

21 / 32

 QQ

イロト 不優 ト 不重 ト 不重 トー 重

Characterising double edges

▶ A double edge is said to be redundant if it belongs to a dual vertex of degree 2.

 \triangleright We should thus remove all degree 2 vertices of \overline{G} .

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Processing of loops

▶ A loop is said to be redundant if it defines a dual vertex of degree 1.

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Merging two regions

- \triangleright Contract in G one of the edge encoding the adjacency between both regions,
- Remove the corresponding edge in \overline{G} ,

► Co[nt](#page-40-0)ract [i](#page-50-0)n \overline{G} \overline{G} \overline{G} \overline{G} \overline{G} one of the two edges inc[ide](#page-38-0)nt [t](#page-38-0)o [v](#page-43-0)e[rt](#page-26-0)i[c](#page-51-0)e f [s](#page-66-0)[uc](#page-0-0)[h](#page-66-0) \overline{G} 2990 that $d(f) \leq 2$. 23 / 32

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Merging two regions

- \triangleright Contract in G one of the edge encoding the adjacency between both regions,
- Remove the corresponding edge in \overline{G} ,
- ▶ Contract in \overline{G} one of the two edges incident to vertice f such that $d(f) < 2$.

Remove corresponding edges in G (loops, double edges).

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Merging two regions

- \triangleright Contract in G one of the edge encoding the adjacency between both regions,
- Remove the corresponding edge in \overline{G} .
- ▶ Contract in \overline{G} one of the two edges incident to vertice f such that $d(f) \leq 2$.
- Remove corresponding edges in G (loops, double edges).

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Merging two regions

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Conclusion

- \blacktriangleright \heartsuit Simple and dual graphs are essentially built using a bottom-up construction scheme.
- \triangleright Compared to simple graphs, dual graphs allow to:
	- \blacktriangleright \heartsuit associate one edge to each connected boundary between 2 regions (segment),
	- \blacktriangleright \odot characterise inside relationship.
- ▶ But:
	- $\blacktriangleright \;$ $\mathbb C$ Dual graphs do not fully use the properties of the plane embedding.
	- \triangleright \odot Does not allow to characterize locally inside relationships.

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Conclusion

- \blacktriangleright \heartsuit Simple and dual graphs are essentially built using a bottom-up construction scheme.
- \triangleright Compared to simple graphs, dual graphs allow to:
	- $\blacktriangleright \hspace{0.1cm} \mathbb{O}$ associate one edge to each connected boundary between 2 regions (segment),
	- $\blacktriangleright \widehat{\heartsuit}$ characterise inside relationship.
- ▶ But:
	- $\blacktriangleright \;$ $\mathbb C$ Dual graphs do not fully use the properties of the plane embedding.
	- \triangleright \odot Does not allow to characterize locally inside relationships.

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Conclusion

- \blacktriangleright \heartsuit Simple and dual graphs are essentially built using a bottom-up construction scheme.
- \triangleright Compared to simple graphs, dual graphs allow to:
	- $\blacktriangleright \hspace{0.1cm} \mathbb{O}$ associate one edge to each connected boundary between 2 regions (segment),
	- $\blacktriangleright \widehat{\heartsuit}$ characterise inside relationship.
- \triangleright But:
	- $\triangleright \hspace{0.1cm} \bullet$ \heartsuit Dual graphs do not fully use the properties of the plane embedding.
	- $\triangleright \odot$ Does not allow to characterize locally inside relationships.

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Conclusion

\blacktriangleright What we may want:

- 1. A model that may be built either bottom-up or top-down,
- 2. which use a single data structure,
- 3. which provide a local characterisation of inside relationships.

24 / 32

- \triangleright Does it exists such a model ???
	- \blacktriangleright \bigcirc Yes.

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Conclusion

\blacktriangleright What we may want:

- 1. A model that may be built either bottom-up or top-down,
- 2. which use a single data structure,
- 3. which provide a local characterisation of inside relationships.

24 / 32

- \triangleright Does it exists such a model ???
	- \blacktriangleright \bigcirc Yes.

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Conclusion

- \blacktriangleright What we may want:
	- 1. A model that may be built either bottom-up or top-down,
	- 2. which use a single data structure,
	- 3. which provide a local characterisation of inside relationships.

24 / 32

- \triangleright Does it exists such a model ???
	- \blacktriangleright \bigcirc Yes.

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Conclusion

- \blacktriangleright What we may want:
	- 1. A model that may be built either bottom-up or top-down,
	- 2. which use a single data structure,
	- 3. which provide a local characterisation of inside relationships.

24 / 32

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 』 ◇ Q ⊙

 \triangleright Does it exists such a model ??? \blacktriangleright \bigcirc Yes.

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Conclusion

- \blacktriangleright What we may want:
	- 1. A model that may be built either bottom-up or top-down,
	- 2. which use a single data structure,
	- 3. which provide a local characterisation of inside relationships.

24 / 32

- \triangleright Does it exists such a model ???
	- ► ⑦ Yes.

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-53-0)

Combinatorial maps

- \blacktriangleright Basic defs
	- \triangleright Set D
	- \triangleright Permutation : bijective application from D to D
		- \triangleright Orbit of b in D according to π

$$
\langle \pi \rangle (b) = \{b, \pi(b), \pi^2(b), \ldots, \pi^n(b)\}
$$

with $n \leq |D|$.

► Cycles Decomposition: $\pi^*(b)$ restriction of π to $\lt \pi$ $>$ (b) is a permutation from $\langle \pi \rangle$ (b) to $\langle \pi \rangle$ (b).

$$
\pi=\pi^*(b_1)\ldots,\pi^*(b_p)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 900 25 / 32

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-53-0)

Combinatorial maps

 \blacktriangleright Basic defs

- \triangleright Set D
- \triangleright Permutation : bijective application from D to D
	- \triangleright Orbit of *b* in *D* according to π

$$
<\pi>(b)=\{b,\pi(b),\pi^{2}(b),\ldots,\pi^{n}(b)\}
$$

with $n < |D|$.

► Cycles Decomposition: $\pi^*(b)$ restriction of π to $<\pi>(b)$ is a permutation from $\langle \pi \rangle$ (b) to $\langle \pi \rangle$ (b).

$$
\pi=\pi^*(b_1)\ldots,\pi^*(b_p)
$$

25 / 32

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 900

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Combinatorial maps

 \blacktriangleright Basic defs

- \triangleright Set D
- \triangleright Permutation : bijective application from D to D
	- \triangleright Orbit of b in D according to π

$$
<\pi>(b)=\{b,\pi(b),\pi^{2}(b),\ldots,\pi^{n}(b)\}
$$

with $n < |D|$.

► Cycles Decomposition: $\pi^*(b)$ restriction of π to $<$ π $>$ (b) is a permutation from $\langle \pi \rangle (b)$ to $\langle \pi \rangle (b)$.

$$
\pi=\pi^*(b_1)\dots,\pi^*(b_p)
$$

25 / 32

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Combinatorial maps: Edges

► Each edge is decomposed in two half edges called darts.

 \blacktriangleright Two darts of a same edge are connected by an involution α : $\alpha(1) = -1, \alpha(-1) = 1$

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Combinatorial maps: Edges

► Each edge is decomposed in two half edges called darts.

 \blacktriangleright Two darts of a same edge are connected by an involution α : $\alpha(1) = -1, \alpha(-1) = 1$

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Combinatorial maps: Edges

$$
\mathcal{D} = \{-6, \dots, -1, 1, \dots, 6\} \forall b \in \mathcal{D} \; \alpha(b) = -b \alpha = (1, -1)(2, -2)(3, -3)(4, -4)(5, -5)(6, -6)
$$

K ロ X K @ X K 경 X X 경 X X 경 2990 26 / 32

 \blacktriangleright Vertices are encoded by the cycles of σ .

 \blacktriangleright $\sigma^*(b)$ encode the sequence of darts encountered by turning with a positive orientation around the vertex containing b.

$$
\sigma^*(1)=(1,-5,-3,-6)
$$

メロメ メ御き メミメ メミメ E 209 27 / 32

Vertices

27 / 32

 Ω

E

メロメ メ部 メメ きょうくきょう

 \triangleright Vertices are encoded by the cycles of σ .

 \blacktriangleright $\sigma^*(b)$ encode the sequence of darts encountered by turning with a positive orientation around the vertex containing b.

$$
\sigma^*(1)=(1,-5,-3,-6)
$$

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Vertices

$$
\sigma=(1,-5,-3,-6)(6,4,5,-2)(2,-1)(3,-4)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @ 27 / 32

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Dual combinatorial map

- Si $G = (\mathcal{D}, \sigma, \alpha)$ alors $\overline{G} = (\mathcal{D}, \varphi = \sigma \circ \alpha, \alpha)$.
- Executive Les cycles de φ codent les faces de la carte duale (et donc la carte duale).

$$
\varphi=(-2,-1,-5)(-4,5,-3)(4,3,-6)(2,6,1)
$$

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Infinite faces

- \triangleright If σ follows the positive orientation, all cycles of φ (faces) but one are traversed with the negative (clockwise) orientation.
- \blacktriangleright The cycle of φ traversed with a positive orientation is called the Infinite face. It encodes the complement of the connected component encoded by the combinatorial map. (Vertex \bigcirc). The other faces are qualified of *finite* by reference to the domain they're surrounding.

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

30 / 32

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 900

Infinite faces

▶ We have one infinite face per connected component

 \blacktriangleright We must encode the inside relationships between these components.

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

An explicit encoding of inside relationships

- ▶ for any finite face f :, $\text{fill}(f)$ infinite faces inside f
- ► For any infinite face f^{∞} : *mere*(f^{∞}) finite face which contains it (limits its domain).

$$
file(f) = {f_1^{\infty}, f_2^{\infty}, f_3^{\infty}}
$$

\n
$$
mere(f_1^{\infty}) = mere(f_2^{\infty})
$$

\n
$$
= mere(f_3^{\infty})
$$

\n
$$
= f
$$

K ロンス 御 > ス ヨ > ス ヨ > 一 ヨ QQ 31 / 32

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

An explicit encoding of inside relationships

- ▶ for any finite face f :, $\text{filled}(f)$ infinite faces inside f
- ► For any infinite face f^{∞} : *mere*(f^{∞}) finite face which contains it (limits its domain).

31 / 32

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

An explicit encoding of inside relationships

- ▶ for any finite face f :, $\mathit{filled}(f)$ infinite faces inside f
- ► For any infinite face f^{∞} : mere(f^{∞}) finite face which contains it (limits its domain).
- $\blacktriangleright \bigwedge$: The location of a newly Inserted connected component is not handled by the combinatorial map model \Rightarrow Requires geometrical information \Rightarrow Combination Combinatorial maps/geometrical models.

http://www.greyc.ensicaen.fr/ luc/ARTICLES/ecole_d_ete2.odp

[Simple graphs](#page-14-0) [Dual Graphs](#page-26-0) [Combinatorial maps](#page-51-0)

Combinatorial maps: conclusion

- \blacktriangleright Implicit encoding of the dual
- \blacktriangleright Explicit encoding of the orientation
- ▶ Associated to inter-pixel boundaries, maps allow to:
	- ► Efficient updates of the partition encoding under split and merge operations,
	- \blacktriangleright Explicit encoding of inside relationships,
	- \triangleright Efficient access to both geometrical and topological information

http://www.greyc.ensicaen.fr/∼luc/ARTICLES/ecole d ete2.odp

 \triangleright May be extended to higher dimensions (3D,4D,...nD) at the price of a much higher memory cost.