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Different way to “see” an image

I A stochastic process,

I A random vector (I [0, 0], I [0, 1], . . . , I [n,m]) if the image
I is an n ?m array.

I A 3D surface (for greyscale images).

I A set of data connected by geometrical/topological
constraints..

I The sampling of a continuous signal.

I . . .
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Sampling

An image is considered as the sampling of a continuous signal:

I = Q ◦ f

I I is the discrete image

I f the continuous signal (f ∈ C 2(IR2, IR) : greyscale
images),

I Q a sampling operator.
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Convolution

I Combination of an image f with an other signal in order
to attenuate or reinforce some properties.

f ∗ g(x , y) =
∫ +∞
−∞

∫ +∞
−∞ f (u, v)g(x − u, y − v)dudv

=
∫ +∞
−∞

∫ +∞
−∞ f (x − u, y − v)g(u, v)dudv

I Discrete version based on discrete masks:

M ∗ I (i , j) =

p∑
k=−p

q∑
l=−q

M[k][l ]I [i − k][j − l ]
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Convolution

I Let us suppose that g is equal to 1
R2 on a square of side

R and null everwhere else.

f ∗ g(x , y) = 1
R2

∫ +R

−R

∫ +R

−R f (x − u, y − v)dudv

Any valeur of f is replaced by its mean on the square.

I Let us suppose that the square C is divided into two
halves C+ and C− with g(u, v) = 1

R2 over C+ and − 1
R2

over C−.

f ∗ g(x , y) = 1
R2

∫ ∫
C+ f (x − u, y − v)dudv−

1
R2

∫ ∫
C− f (x − u, y − v)dudv
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Gaussian function

G (x) =
1

σ
√

2π
e−

x2

2σ2
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Parameter σ determine the flatness of the Gaussian and allows
to control the strength of the filter. A high value of σ induces
a strong smoothing and conversely.
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Gaussian function
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For practical reasons, the convolution of a signal with a
Gaussian is performed by restricting it to a finite support
[−Mε,Mε] with:

∀x ∈ [−Mε,Mε] G (x) > ε

Mε : increasing function of σ
→ The more we wish to smooth, the more we have to increase
the support
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Gaussian function

G (x , y) = 1
σ2(2π)

e−
x2+y2

2σ2 = 1
σ
√
2π
e−

x2

2σ2
1

σ
√
2π
e−

y2

2σ2 = G (x)G (y)

Convolution of the 2D function f with G provides thus:

f ∗ G (x , y) =
∫ +∞
−∞

∫ +∞
−∞ f (x − u, y − v)G (u, v)dudv

=
∫ +∞
−∞

∫ +∞
−∞ f (x − u, y − v)G (u)G (v)dudv

=
∫ +∞
−∞ G (u)

(∫ +∞
−∞ f (x − u, y − v)G (v)dv

)
du

=
∫ +∞
−∞ G (u) (f ∗y G ) (x − u, y)du

f ∗ G (x , y) = (G ∗x (f ∗y G )) (x , y)

where ∗x et ∗y denote convolutions according to variables x
and y .

9 / 36



Gaussian function

I We have thus:

f ∗ G (x , y) = (G ∗x (f ∗y G )) (x , y)

I We use two 1D masks of size [−Mε,Mε] rather than one
2D mask of size [−Mε,Mε]

2

→ complexity O(2|I ||M |) instead of O(|I ||M |2).
I |I |: Image’s size
I |M|: mask’s size
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Gaussian

σ = 2 σ = 4

σ = 8 σ = 16
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Gaussian

I Gaussian filtering is based on a linear combination of the
initial values.

I → One initial impulsion modifies the filtered signal in any
case.

I → boundaries are smoothed.
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Median

I Map each pixel to the median value of the pixels
contained in a given neighborhood.

1. Define a neighborhood

2. sort values in the neighborhood
3. Map the median value to the central pixel

I Properties:
1. Multiplicative law: M[af ] = aM[f ],
2. Filter weakly linear
3. Efficient for impulsive noise
4. Preserve boundaries,
5. Remove extreme values → sparse non significant values

have no influence.
6. Can not be decomposed into a sequence of filters

Mx ◦My (f ) 6= M(f ).
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Example 1

Original Salt &Pepper Median Gaussian
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Example 2

size = 3 size = 5

size = 7 size = 9
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Edge detection

I Sudden change in the signal correspond to high values of
its derivative

I In the 2D case the derivative corresponds to a differential:

Df (p).~n = ∂f
∂x (p).nx + ∂f

∂y (p).ny

= limh→0
f (p)−f (p+(hnx ,hny ))

h

I Only the direction ~n matters → ‖~n‖ = 1
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Use of the gradient

5f =

 ∂f
∂x
∂f
∂y


I We have then: Df (p).~n = 5f (p) • ~n
I Moreover:

max
‖~n‖=1

|Df (p).~n| = max
‖~n‖=1

|5f (p) • ~n| = ‖5f (p)‖

I The norm of the gradient provides the maximal variation
of the differential. This maximum is reached for ~n
colinear with 5f (p)→. The gradient’s direction provides
the direction of greatest variation of the function f .
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Edge detection

(f ∗ g)(k) = (f (k)) ∗ g = f ∗ (g (k))

I Instead of smoothing f and then computing its gradient,
we perform a convolution with the derivative of a
Gaussian. (pre computed).

I In the same way, the computation of the Laplacian is
performed by convoluing f with the Laplacian of a
Gaussian function.
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Edge Detection
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Optimal operators

I Modeling of an edge : C (x) = S0S(x) + B(x)
S(x)

1

x

The optimal operator h convolved with C must have a
maximum in 0 and must allow[Canny86]:

1. A good detection
2. A good localisation
3. a weak multiplicity of maxima induced by noise

→ 2h(x)− 2λ1h
(2)(x) + 2λ2h

(3)(x) + λ3 = 0
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Optimal operators

I Canny 86 : Finite support constraint

h(0) = 0 ; h(M) = 0 ; h′(0) = S ; h′(M) = 0

→ Complex function to encode

I Deriche 87: Same equation but infinite support

h(0) = 0 ; h(+∞) = 0 ; h′(0) = S ; h′(+∞) = 0

⇒ h(x) = ce−α|x |sinωx =
ω≈0

cωxe−α|x | = Cxe−α|x |

I Lissage:

l(x) =

∫ x

0

h(x)dx = b(α|x |+ 1)e−α|x |

α control the smoothing (same role than σ)
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Optimal operators

I Use of the z transform → recursive implementation.
Example : convolution of x(i) with l(i) (result in y)

Pour m = 1, . . . ,M

y+(m) = a0x(m) + a1x(m − 1) − b1y
+(m − 1) − b2y

+(m − 2)
Pour m = M, . . . , 1

y−(m) = a2x(m + 1) + a3x(m + 2) − b1y
−(m + 1) − b2y

−(m + 2)
Pour m = 1, . . . ,M

y(m) = y+(m) + y−(m)

M : signal’s size. Coefficients ai and bi deduced from
parameter α. 8 operations for any α.

I Advantages of Deriche’s filter:

1. Formalisation of the notion of contour
2. Computational times independent of α.
3. No cutting of the filter
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Optimal operators

original α = 1

α = 5 α = 10
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Use of the second differential

I A high gradient does not obviously corresponds to a
contour and conversely

I Detection of gradient”s local maxima: : zeros of the
second differential.

D2f (p).~n = ∂2f
∂x2

(p).nx .nx + ∂2f
∂y2 (p).ny .ny

+2 ∂2f
∂x∂y

(p).nxny

I Extrema of Df (p).~n at ~n⇒ zeros of D2f (p).~n at ~n.
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Use of the Laplacian

4f (p) = ∂2f
∂x2

(p) + ∂2f
∂y2 (p)

I Invariant by rotation→ n does not play any role.

I Using the Laplacian hence avoid to compute the gradient
additionally to the second differential

I Beware!!
4f (p) = 0 6⇒ ∃~n / D2f (p).~n = 0

I Coincide only if (Marr 1980): variations of intensity are
linear on the zero crossing line and on lines parallel to it
in a neighborhood of p.
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Laplacian

I Zeros of the Laplacian are determined by its sign change.
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Color Gradient

f

(
IR2 → IR3

(x , y) 7→ (f1(x , y), f2(x , y), f3(x , y))

I Differential of f in p:

Df (p).(nx , ny ) =


∂f1
∂x (p).nx + ∂f1

∂y (p).ny
∂f2
∂x (p).nx + ∂f2

∂y (p).ny
∂f3
∂x (p).nx + ∂f3

∂y (p).ny


I Squared norm of the differential:

S(p, ~n) = ‖Df (p).(nx , ny )‖2 = Enx
2 + 2Fnxny + Gny

2

E =
∑3

i=1

(
∂fi
∂x

)2
F =

∑3
i=1

∂fi
∂x

∂fi
∂y G =

∑3
i=1

(
∂fi
∂y

)2
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Color Gradient

S(p, ~n) = Enx
2 + 2Fnxny + Gny

2

If ~n = (cos(θ), sin(θ)), maximum of S(p, ~n) for:

θ0 =
1

2
arctan

(
2F

E − G

)
Associated Maximum
λ(x , y) =not S(p, (cos(θ0), sin(θ0))):

λ(x , y) =
E + G +

√
(E − G )2 + 4F 2

2

λ equal to the squared norm of the gradient in the case of a
mono dimensional signal.
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Color Laplacian

I Differential of S(p, ~n):

DS(p).~n = Ex(p)nx
3 + (2Fx(p) + Ey (p))n2xny

+(Gx(p) + 2Fy (p))nxn
2
y + Gy (p)n3y

Ex , Ey ,Fx , Fy et Gx , Gy : partial derivatives of E , F and
G according to x and y .

I DS(p).~n ≈ Laplacian

References:
Zenzo 86, Cumani 89, 91
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Determination of contours

1. Compute the gradient in each point

2. Compute the image of gradient’s norm

3. Extract the local maxima in the direction of the gradient

4. Perform an hysteresis thresholding of the image of
maxima. locaux.

Hysteresis thresholding only preserve:

1. Points whose norm is greater than a high threshold (sh)

2. Points whose norm is greater than a low threshold (sb
with sb < sh) and belonging to a contour having at least
one point whose norm is greater than sh.
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Determination of contours

I Compute D2f (p).~n for any point p of the image

(~n = 5f
‖5f ‖)

I Search for zero crossings of D2f (p).~n in the direction ~n.

I Create the images of zeros crossings and grandient’s
norm.

I Perform an hysteresis thresholding on the image of local
maxima.
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Determination of contours

I Compute the Laplacian.

I Search for zero crossings

I Create the images of zeros crossings and grandient’s
norm.

I Perform an hysteresis thresholding on the image of local
maxima.
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Fourier Transform

I Allows to switch from the spatial domain to the frequency
domain

I For any integrable function:

F (u, v) =

∫ +∞

−∞

∫ +∞

−∞
f (x , y)e−j(ux+vy)dxdy

I Inverse transform:

f (x , y) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
F (u, v)e j(ux+vy)dudv
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Fourier Transform

Function Fourier Transform
Linearity af (x , y) + bg(x , y) aF (u, v) + bG (u, v)
Contraction f (ax , by) 1

|a||b|F (u
a
, u
b

)

Translation f (x − x0, y − y0) e−2jπ(ux0+vy0)F (u, v)
Convolution f ∗ g(x , y) F (u, v)G (u, v)
Separability f (x)g(y) F (u).F (v)
Rotation θ −θ
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Fourier Transform

I Low frequencies near the origin encode flat zones of the
image

I High frequencies encode abrupt changes
(textures/contours),

I This switch of domain of representation allows to
transform global properties (or operations) into local ones.
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Fourier Transform
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