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Sources

Sources used to build this lecture:
▶ My own work: [Brun, 2019]

https://brunl01.users.greyc.fr/ARTICLES/
presentationCAIP2019.pdf

▶ A survey by Zonghan Wu et al [Wu et al., 2019]:
https://arxiv.org/abs/1901.00596
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Applications

The same as structural pattern recognition:
e-commerce : Find links between consumers and products (e

recommandation),
chemistry : associate each graph describing a molecule to a

property (chemical, physical, biological(drug discovery))
citation network : use citations between papers to classify them. . .
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Why is it difficult ?

▶ A basic image neural network:

Images of fixed sizes, fixed number of neighbors, unlabeled links,
fixed neighborhoods

▶ We have thus to re define the following operations:
1. Aggregation,
2. Decimation,
3. Pooling
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Different types of GNN

Aggregation problem:
Recurrent graph neural networks (RecGNN):

Historically, the first type of GNN. Based
on the idea of iterative message passing
between neighbors.

Convolutional Graph neural networks (ConvGNN):
Generalizes the convolution operation
defined on images. Each vertex
aggregates information from its own
features and the ones of its neighbors.
Convolutional neural networks may be
stacked (main diff. with RecGNN)
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Different levels of predictions

Node prediction: predict a value/classify at a node level
▶ Semi supervised learning of nodes (Input: a graph

with some labeled nodes, Output: A classification
of unlabeled nodes).

Edge prediction: predict the existence/strength of an edge based on
nodes hidden representations. (Semi supervised).

Graph level: Output related to the whole graph.
▶ Graph classification/regression. Usually requires a

proper reduction of the input
graphs(decimation,pooling).

▶ Graph embedding. No class required. May be
based on auto encoders or on a regression of the
edge strength.

▶ Graph metric: Learns a distance/similarity value
between graphs. Should be combined with a
classification/regression task.

Graph sequences: A sequence of graphs G(t) = (V, E, X(t)) with fixed
topology but varying values has to be classified (gesture
recognition, brain graphs, traffic speed forecasting,. . . )
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Graph Agregation

▶ Associate to each vertex v an hidden variable hv and aggregate
local information.

h(t)
v = F (xv, {(xu, xe

vu, h(t−1)
u )}u∈Nv

)

▶ Using images we learn w0 . . . , w8:

w5 w1 w6
w3 w0 w4
w7 w2 w8

w1 denotes the weigh of the pixel above the central pixel.
▶ Using graphs:

iw0

yw1

yw2
�� yw3

AA

iw0

yw1

yw2
�� yw3

AA

iw0

yw1

yw2
�� yw3

AA

Without embedding nothing distinguishes the cyan,red and green
neighbors.
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How to become permutation invariant

▶ Message passing Framework (MPN): A framework to unify
permutation invariant agregation functions:

mt
v =

∑
w∈Nv

Mt(ht−1
v , h

(t−1)
w , ev,w)

ht
v = Ut(h(t−1)

v , mt
v)

y = R({hT
v | v ∈ G}).

where Mt(), Ut(), R() are learnable functions.
▶ May be summed up by a function f independent of the order of

its arguments:

h(t)
v =

∑
u∈Nv

f(xv, xu, xe
vu, h(t−1)

u )

▶ A basic strategy common to Recurrent and convolutional graph
neural networks.
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Recurrent Graph Neural Networks
▶ Initially proposed for acyclic graphs:
▶ Basic idea: iterate an update of hidden values up to convergence:

h(t)
v =

∑
v′∈N (v)

f(xv, xv,v′ , xv′ , h
(t−1)
v′ )

▶ Each iteration should alternate:
▶ Label propagation:
▶ Gradient computation (using an appropriate loss function)

▶ functionf may be:
▶ An affine function [Scarselli et al., 2009],

f(lv, lv,v′ , lv′ , h
(t−1)
v′ ) = A(lv,lv,v′ ,lv′ )h

(t−1)
v′ + b(lv,lv,v′ ,lv′ )

▶ A MLP [Massa et al., 2006]

Par HRcommons — Travail personnel, Domaine public,
https://commons.wikimedia.org/w/index.php?curid=11996182

▶ in any case f should be a contraction mapping to insure
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Example

1

2

3

4

l1,2

l1,3

l1,4

t = 0

t = 1
t = 2

t = 3
t = 4

{
h

(t)
v =

∑
u∈Nv

f(xv, xu, xe
vu, ht−1

u )
ov = gw(hT

v , lv)
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More complex agregation functions

▶ A long Short-term Memory [Hochreiter and Schmidhuber, 1997,
Peng et al., 2017, Zayats and Ostendorf, 2018]

▶ A Gated Reccurent Unit [Li et al., 2016]

h
(1)
v = [xT

v , 0] (1)
a

(t)
v = AT

v [h(t−1) T
1 , . . . , h

(t−1) T
|V | ]T + b (2)

zt
v = σ(W za

(t)
v + Uzh

(t−1)
v ) (3)

rt
v = σ(W ra

(t)
v + Urh

(t−1)
v ) (4)

h̃
(t)
v = tanh

(
Wa

(t)
v + U

(
rt

v ⊙ h
(t−1)
v

))
(5)

ht
v = (1− zt

v)⊙ h
(t−1)
v + zt

v ⊙ h̃t
v (6)

zt
v: update gate, rt

v: reset gate, Av: weight by edges types.
▶ No more contraction constraint.
▶ uses the back-propagation through time (requires to store all

intermediate states of all nodes).
▶ Learned weight by edge type:

a
(t)
v =

∑
w∈N (v) Alv,w h

(t−1)
w [Gilmer et al., 2017]
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Rec. and Conv. Graph neural networks

▶ Rec. Graph NN are iterative algorithms:{
mt

v =
∑

w∈Nv
M(ht−1

v , h
(t−1)
w , ev,w)

ht
v = U(h(t−1)

v , mt
v)

h0
v−→
�� ��Rec. Layer h1

v−→
�� ��Rec. Layer h2

v−→ . . . . . .
h(T −1)

v−→
�� ��Rec. Layer hT

v−→

▶ Graph convolution is one shot:{
mt

v =
∑

w∈Nv
Mt(ht−1

v , h
(t−1)
w , ev,w)

ht
v = Ut(h(t−1)

v , mt
v)

h0
v−→
�



�
	conv.

layer 1
h1

v−→
�



�
	conv.

layer 2
h2

v−→ . . . . . .
h(T −1)

v−→
�



�
	conv.

layer T
hT

v−→
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Two famillies of methods

Spectral approach: Based on the Laplacian matrix. Transposes signal
processing results onto the graph domain.

Spatial-based approach: Close from Rec. GNN. Based on “Hand
made” learned filters.
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The spectral approach

▶ Graph Laplacian:

L = D −A with Dii =
n∑

j=1
Aij

A adjacency matrix of a graph G.
▶ Matrix L is real symmetric semi definite positive:

L = UΛUT

U orthogonal, Λ real(positive) diagonal matrix.
▶ A classical result from signal processing:

x ∗ y = F−1(x̂.ŷ)

*: convolution operation, F−1 inverse Fourrier transform, x̂
fourrier transform of x, ’.’ term by term multiplication.
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The spectral approach

▶ If x is a signal on G, x̂ = UT x can be considered as its “Fourrier”
transform. We have:

Ux̂ = UUT x = x

U is thus the inverse Fourier transform.
▶ By analogy:

z ∗ x = U(ẑ ⊙ x̂) = U
(
UT z ⊙ UT x

)
= U

(
diag(UT z)UT x

)
⊙: Hadamard product.

▶ Let gθ(Λ) be a diagonal matrix. The filtering of x by gθ is:

y = U
(
gθ(Λ)UT x

)
=
(
Ugθ(Λ)UT

)
x
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The spectral approach
▶ If: gθ(Λ) =

∑K−1
i=0 θiΛi. Then:

y =
(
Ugθ(Λ)UT

)
x = U

(
K−1∑
d=0

θdΛd

)
UT x =

(
K−1∑
d=0

θdLd

)
x

▶ One parameter per ring:
▶ Lx : one step (direct) neighborhood,
▶ L2x : two step neighborhood (idem for L3, L4, . . . )

▶ If multiple components:

yj = σ

fk−1∑
i=1

(
K−1∑
d=0

θi,j
d Ld

)
xi

 for j = 1, . . . , fk

▶ If gθ = Θ(k)
i,j (layer k from component i to j) we obtain using

previous notations:

h
(k)
j = σ

fk−1∑
i=1

UΘ(k)
i,j UT h

(k−1)
i


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Chebyshev polynomials
▶ Problem: Computing Li for i ∈ {0, . . . , K − 1} is problematic for

large matrices (SVD computation)
▶ Let us consider Chebyshev polynomial

Tk(x) = 2xTk−1(x)− Tk−2(x), with T0 = 1 and T1(x) = x.

gθ(Λ) =
K−1∑
i=0

θiΛi → gθ(Λ) =
K−1∑
i=0

θiTi(Λ̃)

Λ̃ = 2Λ/λmax − I ∈ [−1, 1 :] the domain of Chebyshev
polynomials.

▶ Considering L̃ = U Λ̃UT = 2L/λmax − I and x̃k = Tk(L̃)x we
have:

x̃k = 2L̃x̃k−1 − x̃k−2

with x̃0 = x and x̃1 = L̃x
▶ O(K|E|) operations to get all x̃k.

y =
K−1∑
d=0

θdx̃d
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Cayley polynomials

▶ Chebyshef polynomials imposes to shrink the spectrum within
[−1, 1].

▶ If several eigenvalues are close it becomes difficult to explicit the
influence of a given eigenvalue. More precisely, the number of
Chebyshev coefficients required for approximating a filter having
features in a given scale, is inverse proportional to the scale.

▶ Using Cayley transform g(x) = x−i
x+i from R to eiR/{1} we derive

the Cayley polynomials:

gc,γ(λ) = c0 + 2Re{
r∑

j=1
cj

(
(γλ− i)
(γλ + i)

)j

}

γ > 0 is the spectral zoom parameter, i2 = −1.
▶ Given a graph with a Laplacian L = U∆UT , and an input x, we

have:

y = gc,γ(∆)x = c0x + 2Re{
r∑

j=1
cj(γ∆− iI)j(γ∆ + iI)−jx}
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First order approximation

▶ If K = 2, Chebyshev def. provides:

y =
K−1∑
d=0

θdx̃d = θ0x̃0 + θ1x̃1 = θ0x + θ1L̃x

▶ If we additionnaly suppose that λmax ≈ 2 then L̃ = L− I :

y = θ0x+θ1(L−I)x = θ0x+θ1(I−D− 1
2 AD− 1

2−I)x = θ0x−θ1D− 1
2 AD− 1

2 x

▶ with θ0 = −θ1 = θ we obtain:

y = θ
(

I + D− 1
2 AD− 1

2

)
x
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First order approximation

▶ To improve stability I + D− 1
2 AD− 1

2 → D̃− 1
2 ÃD̃− 1

2 . So:

y = θD̃− 1
2 ÃD̃− 1

2 x

with Ã = A + I, D̃i,i =
∑

j Ãi,j .
▶ Generalization to multi-components:

Z = D̃− 1
2 ÃD̃− 1

2 XΘ

where X ∈ RN×C , Θ ∈ RC×F .
▶ Simpler (more efficient) convolution.
▶ Additional hops may be obtained by iterating convolutions.
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Spatial approaches

▶ Mimics image convolution.
▶ Each vertex receives a weighted sum of the values of its neighbors

(without any reference to Fourrier).
▶ How to define weighs,
▶ how to map a specific weight to a specific neighbors

using spectral convolution these tasks are defined by the
Laplacian.

▶ Let us note that GCN [Kipf and Welling, 2017] may be
interpreted as a transition between spectral and spatial
approaches. Indeed:

y = θD̃− 1
2 ÃD̃− 1

2 x⇒ yv = θ
∑

u∈Nv∪{v}

(D̃− 1
2 ÃD̃− 1

2 )v,uxu
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First methods

▶ NN4G [Micheli, 2009]

h1
v = f(W1xv)

hk
v = f

(
W1xv + W2

∑
u∈Nv

h
(k−1)
u

)
▶ Re formulated in terms of Graph Markov

models [Bacciu et al., 2018]
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First methods

▶ DCNN [Atwood and Towsley, 2016]: Let P = D−1A be a
transition probability matrix :
▶ Node features propagation:

hk = W k ⊙ P kx ; y = f
(
||rj=0hj

)
|| : concatenation

▶ An other possibility:

y =
r∑

j=0

f
(
P kXW (k))
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Different neighborhoods

▶ PGC-DGCNN [Tran et al., 2018]: Let S such that S
(j)
v,u = 1 iff

there is a shortest path of length j between v and u.

hk = ||rj=0f
(

(D̃(j))−1S(j)h(k−1)W (j,k)
)

with D̃
(j)
ii =

∑
l S

(j)
i,l

Connect “easily” distant vertices.
▶ PGC [Yan et al., 2018]. Let us suppose that any neighborhood
Nv is partitioned into K clusters N 0

v , . . . ,NK−1
v :

hk =
K−1∑
j=0

A
(j)

h(k−1)W (j,k),

with A
(j) = (D̃(j))− 1

2 Ã(j)(D̃(j))− 1
2 , Ã(j) = A(j) + I, h0 = x.

Allows to insert a priori information in the convolution process.
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Using MPN notations

▶ A familly of methods following the update rules:
mt

v =
∑

u∈Nv
Mt(ht−1

v , h
(t−1)
w , ev,w)

ht
v = Ut(h(t−1)

v , mt
v)

y = R({hT
v | v ∈ G}).

▶ [Duvenaud et al., 2015]:
M(hv, hw, ev,w) = hw||ev,w, Ut(h(t−1)

v , mt
v) = σ(Hdeg(v)

t mt
v) where

H
deg(v)
t is a learned matrix. R = f(

∑
v,t softmax(Wth

t
v)).

▶ [Li et al., 2016] (see slide 12), M = Aev,w
h

(t−1)
w ,

U = GRU(h(t−1)
v , mt

v) and R =
∑

v∈V σ(i(h(T )
v , h0

v))⊙ (j(h(T )
v ))

where i and j are neural networks and ⊙ the Hadamar product.

26 / 101



Message Passing Networks

▶ [Battaglia et al., 2016]
M = i(hv||hw||ev,w), U = j(hv||xv||mv), R = f(

∑
v hT

v ) where || is
the concatenation, i, j, f are neural networks, xv is an external
feature of v

▶ [Kearnes et al., 2016] M(h(t−1)
v , h

(t−1)
w , e

(t−1)
v,w ) = et

v,w =
α(W4(α(W2e

(t−1)
v,w )||α(W3(h(t−1)

v ||h(t−1)
w )))),

U(h(t−1)
v , mt

v) = α(W1(α(W0h
(t−1)
v )||mt

v)). α ReLU function,
W0, . . . , W4 learned weighs matrices, et

v,w learned edge
representation.

▶ [Schütt et al., 2017]:

M = tanh
(

W fc((W cf h(t−1)
w + b1)⊙ (W df ev,w + b2))

)
W cf , W df , b1, b2 learned matrices and biases.
U(h(t−1

v , mt
v) = h

(t−1)
v + mt

v, R =
∑

v NN(hT
v ).

27 / 101



Message Passing Networks

▶ [Kipf and Welling, 2017] M = Avw√
deg(v)deg(w)

, U = RELU(Wmt
v),

▶ [Gilmer et al., 2017] (see slide 12) M = Alv,w
h

(t−1)
w

▶ [Simonovsky and Komodakis, 2017]

M = 1
|Nv|

∑
u∈Nv

Fθ(lv,u)h(t−1) + b

F : Parametric function of θ which associates one weigh to each
edge label lv,u.

▶ Laplacian based methods: M = Ct
v,wh

(t−1)
w where Ct is a matrix

based on the Laplacian, U = σ(mt
v).
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Graph attention network

▶ [Verma et al., 2017]:

yv = 1
|Nv|

M∑
m=1

∑
u∈Nv

qm(u, v)Wmu + b

qm(., .) mth learned soft-assignment function. Wm weight matrix:

qm(u, v) ∝ exp(αT
mu + βT

mv + cm),

with
∑M

m=1 qm(u, v) = 1
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Graph attention Networks

▶ Not all neighbors have a same importance for update:

αt
v,v′ = softmaxv′(et

v,v′) =
exp(et

v,v′)∑
v′′∈Ni

exp(et
v,v′′)

▶ With : et
v,v′ = LeakyReLU(aT [W thv||W thv′ ])

a, W : learnable weight vector and matrix.
▶ Update rule:

ht
v = σ(

∑
u∈Nv

αv,uW th(t−1)
u )

▶ With K features:

ht
v = ||Kk=1σ(

∑
u∈Nv

αk
v,uW th(t−1)

u )
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Graph attention network

▶ Same basic idea than [Velickovic et al., 2018] but do not use a
global attention for the edge.Uses instead the notion of (K)
heads.

ht
v = FCθ0(h(t−1)

v ||
(
||Kk=1

∑
u∈Nv

w
(k)
u,vFCh

θ
(k)
V

(h(t−1)
v )

)
),

w
(k)
v,u = eφ

(k)
w (v,u)∑

u∈Nv
eφ

(k)
w (v,u)

,

φ
(k)
w (v, u) = < FC

θ
(k)
xa

(v), FC
θ

(k)
za

(u) > .

where FC
θ

(k)
xa

, FC
θ

(k)
za

and FCθV
full connected layers for the query,

the key and the value.
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Spectral/Spatial approaches

Property spectral spatial
Localized filter ✓ ✓
Theoretical background on
signal processing on graphs

✓

Individual node weighting ring ✓
Can be applied to different
graphs

Not really ✓

Efficiency/modularity ✓
Adatative to different types
of graphs

✓
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Generalization of Spectral/Spatial ap-
proaches

Definition
Graph Shift Operators
A matrix S ∈ Rn×n is called a Graph shift operator (GSO) if it
satisfies:

i ̸= j and (i, j) ̸∈ E ⇒ Sij = 0

Aggregation is then performed using:

ht = σ(Sht−1W )

where S is a GSO, h our vector of features, W the projection matrix.
GSO cover all one hop spectral and spatial approaches
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GSO: A proposal

Proposed by [Dasoulas et al., 2021].
Let A ∈ Rn×n be the adjacency matrix of a graph G and S a set of
parameter. The GSO γ(A,S) is defined by:

γ(A,S) = m1De1
a + m2De2

a AaDe3
a + m3In

where Aa = A + aIn and Da = diag(Aa1n) is the diagonal matrix of
Aa. The set of parameters is defined by S = (m1, m2, m3, e1, e2, e3, a)

S
Convolution m1 m2 m3 e1 e2 e3 a γ(A,S)

GCN 0 1 0 0 − 1
2 − 1

2 1 D
− 1

2
1 A1D

− 1
2

1
GIN 0 1 0 0 0 0 1 + ϵ A + (1 + ϵ)In

DCNN 0 1 0 0 −1 0 0 D−1A

Theorem: γ(A, S) has real eigenvalues and a set of real eigenvectors.
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Limits of Graph aggregation methods

Oversmoothing: Over iterations (successive layers), no feature hl

tends to become independent of h0 and hence only
captures rough structural information.

Oversquashing: Node feature of a node i: is almost insentitive to the
one of a distant node j.
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Oversmoothing

▶ Dirichlet : One measure of oversmoothing:

E(f) = fT Lf = 1
2
∑
i,j

wij(fi − fj)2 with L = D −A, D = A1

where A = (wij) and f encodes a scalar value for each node.

Ẽ(f) = fT L̃f = 1
2
∑
i,j

wij

(
fi√
di

− fj√
dj

)2

with L̃ = I−D− 1
2 AD− 1

2

Extended to arbitrary dimension by:

Ẽ(X) = tr(XT L̃X) = 1
2
∑
i,j

wij∥
xi√
di

− xj√
dj

∥2

E (or Ẽ) tends to decrease up to a certain point.
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Oversmoothing

▶ Example with Conv = D− 1
2 (A + I)AD− 1

2 , (D degree matrix of
A + I). Statistics computed over 50 graphs of 2000 nodes.
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Oversmoothing: What is happening ?

Let C = γ(A,S) denote a GSO. If we neglect non linear functions,
GCN iterates :

hl+1 = Chl

is similar to the power iteration method:

hl+1 = Chl

∥Chl∥

and converges (up to a normalization) to the eigenvector associated to
the largest eigenvalue of C (and is thus independent of h0).
▶ Conclusion: A GNN do not converge toward a same value for all

node, but toward a value for each node which is independent of
the initial node values.
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Oversmoothing: explicit convergence

▶ Let us consider a normalized GSO: C̃ = D− 1
2 CD− 1

2 with
C = γ(A,S) and

▶ D the degree matrix of C.
▶ Let us additionally consider the Laplacian matrix L̃ = I − C̃. L̃

being normalized its eigenvalues belong to [0, 2].
Let v denote an eigenvector of L̃ we have:

C̃v = (I − L̃)v = v − λv = (1− λ)v

Since λ ∈ [0, 2](0 reached) the highest eigenvalue of C̃ is equal to 1
and its associated eigenvector is the eigenvector associated to 0 in L̃.
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Oversmoothing: explicit convergence

▶ Let us additionally suppose that the graph is connected
according to C. Then the eigenvalue 0 of L̃ has multiplicity 1.

▶ Let us consider L = D − C whose eigenvector associated to 0 is 1
and v = D

1
2 1,

we have:
L̃v =

(
D− 1

2 LD− 1
2

)
D

1
2 1 = D− 1

2 L1 = 0

The eigenvector of L̃ associated to 0 and hence the eigenvector of C̃
associated to 1 is equal to v = D

1
2 1.

▶ Conclusion: All GCN without non linear operations converge to
D

1
2 1 independently of the input nodes’ feature.

▶ Example: if C = D− 1
2 (A + I)D− 1

2 , vi =
√

di + 1, di: degree of
node i.
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Oversquashing

The influence of one node over an other node decay exponentially
with their distance. More precisely, if :

hl+1 = σ(W tCh)

where σ is a non linear function with a cσ Lipschitz coefficient,
C = crI + caA = γ(A,S) with S = (0, ca, cr, 0, 0, 0, 0) is a GSO and
W t ∈ Rp×p is a learnable weight matrix with a maximal value w.
Then we have [Giovanni et al., 2023]:∥∥∥∥∥∂h

(m)
v

∂h
(0)
u

∥∥∥∥∥
L1

≤ (cσwp)m(Cm)u,v

▶ (Cm)u,v: number of walks in C of length m between u and v.

∂h
(m)
v

∂h
(0)
u

= 0 If m ≤ dC(u, v)

▶ Increasing csσ, w, p may decrease the oversquashing effect but it
acts globally.
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oversquashing: What happen when in-
formation is merged ?

If ca ≤ 1 and d(u, v) = r let γl(u, v) denotes the number of walks of
maximal length l between u and v. For any 0 ≤ k < r, it exists
Ck > 0 independent of r and the graph, such that:∥∥∥∥∥∂h

(m)
v

∂h
(0)
u

∥∥∥∥∥
L1

≤ Ckγr+k(u, v)
(

2cσwp

dmin

)r

where dmin is the minimal degree of G.
▶ If 2cσwp < dmin we get an exponential decrease.
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oversquashing: Experiments
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Graph clustering
▶ Decimation is often considered as a graph clustering

problem [Dhillon et al., 2007].
▶ Several criteria with:

link(A, B) =
∑

u∈A,v∈B

wu,v deg(A) = link(A, V )

Ratio association: maximize within links.

Rassoc(G) = max
V1,...,Vk

k∑
c=1

links(Vc,Vc)
|Vc|

Ratio cut: minimize links between clusters

RCut(G) = min
V1,...,Vk

k∑
c=1

links(Vc, V − Vc)
|Vc|

Kernighan-Lin approx. same than Ration cut with clusters of
identical size.

KLObj(G) = min
V1,...,Vk

k∑
c=1

links(Vc, V − Vc)
|Vc|

with |Vc| ≈
V

k
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Graph Decimation vs Graph clustering

▶ Is it a clustering or a sub sampling problem ?

▶ Decimation is related to sub-sampling.
▶ Sub-sampling and clustering are two different problems.
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On the need of sub sampling

▶ Given a 1D signal x(t) with a maximal frequency w. Then x can
be sampled at the sampling rate fs if fs > 2w (Nyquist-Shanon
theorem).

▶ Let us consider a low pass filter g applied n times and the
resulting signal xn(t) of maximal frequency wn.
▶ wn is decreasing,
▶ if xn conserve the same sampling rate fs, we have fs >> 2wn and

the signal contain redundant information.
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Few words from Graph Signal Process-
ing(GSP)
Let G be a simple, connected, undirected graph whose normalized
Laplacian’s decomposition is given by L = UΛUT where

Λ = diag(λ1, . . . , λN ), 0 = λ1 ≤ λ2, . . . ,≤ λn ≤ 2.

The Graph Fourrier Transform (GFT) of a signal f on G is given by
f̃ = UT f (page 16).
A w-band limited signal on G is defined to have 0 GFT coefficients
above w, i.e. its spectral support is limited to [0, w].

Definition (Paley-Wiener space)
The space of all w band limited signals known as the Paley-Wiener
space is denoted PWw(G). If {u1, . . . , uN} denotes the columns of U ,
we trivially have

PWw(G) = span({u1, . . . , ui}) with λi ≤ w.

If w < λ2 we have PWw(G) = Ru1 which corresponds to the set of
constant signals on the graph.
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Few words from GSP

Definition (Uniqueness set)
A subset of nodes S ⊂ V is a uniqueness set for the space PWw(G), if
for any two signals from PWw(G), the fact that they coincide on S
implies that they coincide on V, i.e.:

∀f, g ∈ PWw(G), f(S) = g(S)⇒ f = g

For w < λ2, any subset of V is a uniqueness subset of PWw(G).
Lemma
S is a uniqueness set for a signals in PWw(G) iff
PWw(G) ∩ L2(Sc) = {0}, where :

L2(Sc) = {ϕ ∈ RN , ϕ(S) = 0}

is the space of all graph signals that are zero everywhere except
possibly on the subset of nodes Sc.

Proof.
See [Anis et al., 2014].
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GSP and downsampling

Definition (Graph downsampling)
S is an allowed down-sampling for a signal f on G, if it exists w such
that f ∈ PWw(G) and S is a uniqueness set for PWw(G).
Let us consider the low pass filter gn which cuts off (set to zeros) the
n highest eigenvalues of L. The filtered version of f , denoted fn is
equal to fn = Ugn(Λ)UT f . We have:

Proposition
For any signal f and for any uniqueness set S of a set PWw(G), it
exists a filtered version fn of f such that S is an allowed
down-sampling for fn.

Proof.
Let us consider n = N − dim(PWw(G)). We have by definition of gn,
fn ∈ span(u1, . . . , udim(P Ww(G))), hence fn ∈ PWw(G).
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Graph downsampling: Discussion

For any S ⊂ V and any f ∈ RN , a sufficient low pass filtering of f
"forces" the set S to become an allowed down-sampling for a filtered
version fn of f .
Intuitively, fn contains a sufficient amount of redundant information
to be described by the reduced set of vertices S.
At the extreme, using n = N − 1, any subset S ⊂ V is an allowed
down-sampling. It corresponds to the case where f has been filtered
up to a constant signal.

Let us consider a dataset G of graphs with a constant
value (e.g. a set of molecular graphs encoding alkanes).
▶ The above results states that the signal on each graph can be

encoded by a single vertex.
▶ It is wrong to conclude that each graph can be reduced to a

single vertex. The information is in this case in the structure and
not in the content.
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Graph pooling

▶ Finalize the graph classification procedure (Graph pooling):

h0
v−→
�



�
	conv.

layer 1
h1

v−→
�



�
	conv.

layer 2
h2

v−→ . . .
h(T −1)

v−→
�



�
	conv.

layer T
hT

v−→
�� ��Pooling −→

▶ Define a hierarchical decision (vertex pooling)

C
O
N
V.

P
O
O
L.

M
LP

C
O
N
V.

P
O
O
L.

…
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Graph pooling

▶ Attach a value to a surviving vertex based on its reduction
window

▶ Classical methods:

ht
v = mean/max/sumu∈RW (v)h

(t−1)
u

May also be used for final decision.
▶ [Zhang et al., 2018]:

▶ concatenate all convolution results: h1:K
v = ||Kt=1ht

v,
▶ Identifies identical vertex feature’s vector, sort them from right

(K) to left (1).
▶ Cut the number of vertices to a pre defined number q (or span

with 0 vertices if |V | < q).
▶ Transform the resulting q × F matrix into a 1D vector finish the

work with 1D convolutional layers.
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Vertex Pooling

▶ Usually defined through a matrix Sl ∈ Rnl×nl+1 which encodes
the attachment of the vertices of Gl onto the one of Gl+1.{

hl+1 = (Sl)T hl ∈ Rnl+1×d

Al+1 = (Sl)T AlSl ∈ Rnl+1×nl+1

▶ For example:

S =


1 0 0
1 0 0
0 1 0
0 0 1
0 0 1


▶ We have:

(S(l)⊤A(l)S(l))i,j =
nl∑

k,m

A
(l)
k,mS

(l)
k,iS

(l)
m,j

i is adjacent to j in Gl+1 iff: ?
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DIFFPOOL

▶ Method proposed by [Ying et al., 2018]
▶ Sl is learned at each layer (through a GNN):

Sl = softmax(GNNl,pool(Al, hl))

the softmax being applied row-wize.
▶ Al+1 defines a complete graph and Sl+1 has no constraints to

define clear assignments.
▶ The authors proposed to add a penalization cost:

||Al − Sl(Sl)T ||F + 1
nl+1

nl+1∑
i=1

H(Sl
i)

where H is a measure of entropy and Sl
i is the ith row of Sl+1.

||Al − Sl(Sl)T ||F pushes toward highly connected clusters.
1

nl+1

∑nl+1
i=1 H(Sl

i) pushes Sl toward a binary matrix.
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DIFFPOOL

▶ Learning the decimation Sl is a good idea.
▶ Sl is not sparse and thus A(l+1) is almost complete.
▶ Learning Sl imposes to use graphs of fixed size.
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Top K methods
▶ Select a given amount (k) of vertices:

S =


1 0 0
0 0 0
0 1 0
0 0 1
0 0 0

 , selection of 1,3,4

▶ The formula A(l+1) = (Sl)T AlSl may provide disconnected
graphs.

▶ We may use the Kron reduction [Bianchi et al., 2022]. Connects
all pairs of surviving vertices adjacent to a same removed vertex.i iy

i
@ � -

i i
i�
�

@
@
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Top K methods

▶ A score is assigned to each vertex of the graph.
▶ The vertices with the Top-k highest score are selected.

Projection:

score(v) = < p, ht
v >

∥p∥
GNNPool:

score = GNNl,pool(Al, hl)

Combinaison GNNpool + relevance structurelle
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Top-k/DiffPool: Pros/cons

▶ DiffPool learns the attachment of non surviving vertices to
surviving ones.
▶ Dense matrices,
▶ Graph of fixed size (the max one).

▶ Top-k learns the selection of surviving vertices but discard non
survivning ones
▶ May create disconnected graphs,
▶ May ignore large parts of the graph,
▶ removes a large part of the information related to the vertices.

▶ Why not defining a Top-k with a learned attachment of non
surviving vertices ?
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Introduction to Irregular Pyramids

Score 
Function

0.8
0.1
0.5
0.1
0.7

MIVS

1 0 0
1 0 0
0 1 0
0 0 1
0 0 1

Graph 
G(l) Score s Matrix S

X(l+1) = S’T X(l) 
A(l+1) = ST A(l) S

Graph 
G(l+1)
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Irregular Pyramids

▶ Stack of graphs (G0, G1, . . . , Gn) successively reduced.
▶ G0 : encodes the initial grid or an initial segmentation.

G0

G1

G2

G3

▶ Final results: sequence of reduced graphs G0, . . . , Gn
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Reduction window

▶ v ∈ V i comes from the merge of a connected set of vertice in
Gi−1.

RWi(v) = {v, v1, . . . , vn−1} ⊂ V i−1

▶ vj ∈ RWi(v) is a son of v,
▶ v is the father of all vj ∈ RWj(v).
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Receptive field

▶ Receptive field: transitive closure of the father/child relationship.

∀i ≥ 1,∀v ∈ V i, RFi(v) =
⋃

v′∈RWi(v)

RFi−1(v′) ⊂ V 0

with RF0(v) = {v},∀v ∈ V 0.
▶ w ∈ RFi(v) is a descendant of v,
▶ v is an ancestor of w.
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Size of receptive fields

Let us suppose that at any layer l and for any vertex w ∈ V l:{
RW l(w) = {w} or
RW l(w) = {w, v1, . . . , vn} with ∀i ∈ {1, . . . , n} dGl−1(w, vi) = 1

(1)
where dGl−1(., .) is the distance within the graph Gl−1 defined at layer
l − 1.

Proposition
Using a decimation scheme satisfying equation 1 we have for any
vertex w surviving at level l in the hierarchy:

∀(u, v) ∈ RF l(w)2
dG0(u, v) ≤ 2 ∗ 3l − 1
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A only pooling scenario

L et us consider the simple following pooling function:

hl = pooll(hl−1) = Slhl−1 (2)

Iterating the previous equation up to level 0 lead to:

hq =
(

q∏
l=1

Sl

)
h0 =not Σqh0

with Σq =
∏q

l=1 Sl ∈ Rnq×n, where nq is the number of vertices of Gq

and n the number of vertices of G0.
Let σq

i,j denotes the coefficient (i, j) of Σq. If at any level a vertex
either survives or is attached to an unique surviving neighbor we have:

σq
i,j =

{ ∏q
k=1 sk

pk(j),pk−1(j) If j ∈ RF q(i)
0 otherwize

where pk(j) denote the ancestor of j at level k.
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Pooling and over-smoothing

We have thus:

hq
i =

nq∑
j=1

σq
i,jh0

j =
∑

j∈RF q(i)
σq

i,jh0
j

If all Si are line stochastic we have:
N∑

j=1
σq

i,j =
∑

j∈RF q(i)
σq

i,j = 1

So hq
i is a weighted sum of the features in RF q(i). Moreover, in this

case, at any level q, {RF q(i)}i∈V q forms a partition of V q.
This pooling scheme can not produce an over-smoothing unless all
vertices in the base level have similar values.
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Pooling and over-smoothing : Illustra-
tion
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Pooling and over-squashing

yj = p0(j)

yp1(j)

ypm−1(j) �
�
�
��

yi

yi

...

yi

...

yi

If Σq is independent of h0 we have:

∂hq
i

∂h0
j

= σq
i,j =

(
q∏

k=m+1
sk

i,i

)(
m∏

k=1
sk

pk(j),pk−1(j)

)

if j ∈ RF q(i), 0 otherwise. If
sk

w,w = 1,∀k, w:

∂hq
i

∂h0
j

=
(

m∏
k=1

sk
pk(j),pk−1(j)

)
is constant
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Pooling and over-squashing
6

-

∣∣∣∂hq
i

q

∂h0
j

∣∣∣

layers

m

sk
ww = 1

sk
ww < 1

With Proposition 2 (slide 63) we have:

dG0(i, j) ≤ 2 ∗ 3m − 1⇒ m ≥ log3

(
dG0(i, j) + 1

2

)
Let us suppose that m ≈ log3(dG0 (i,j)+1

2 ) and let us look at the value
of the pic. To this end, let sk

k,l = s < 1,∀k ̸= l. We get:

∂hm
i

∂h0
j

=
(

m∏
k=1

sk
pk(j),pk−1(j)

)
= sm ≈ slog3(

dG0 (i,j)+1
2 ) =

(
dG0(i, j) + 1

2

)log3(s)
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Since log3(s) < 0 we get:

∂hm
i

∂h0
j
≈
(

2
dG0(i, j) + 1

)α

with α = − log3(s) > 0

The higher s is, the higher ∂hm
i

∂h0
j

will be. Note that it may not be an
advantage, since it means that the network will have difficulties to
differentiate near from far neighbors.
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Construction schemes of the pyramid

▶ sequential methods:
▶ sort the edges of the graphs
▶ Union-find

▶ parallel method:
▶ Define parallel merge operations
▶ each step builds a new graph Gi+1 from Gi.
▶ |Gi+1| is a fixed ratio of |Gi|.

|Gi+1| ≈ q|Gi| with q < 1: reduction factor

▶ the parallelism is a constraint for segmentation algorithms

▶ yq q : “forces” a fixed amount of fusions at each step

|Gi+1| ≈ q|Gi|

▶ yq q: bounds the number of graphs we have to build/store

P = (G0 . . . , Gn) with n = logr(|G0|)
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Parallel construction schemes

▶ A set of independant processes merge vertices in parallel
▶ Problem : How to insure that: Vi

Vi−1
⪅ 1

2
▶ computational time
▶ storage memory.
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Maximal Independent Set

Let us consider a set of abstract elements X and a symmetric
neighborhood relationships N on X.
▶ Y ⊂ X is an independent set of X iff it statisfies the Internal

stability constraint:

∀(y, y′) ∈ Y 2, y ̸∈ N (y′)

Two neighbors cannot both survive
▶ Y is a maximal independant set iff adding any other element to it

breaks independance. It satisfies in this case the External
stability constraint:

∀x ∈ X − Y, ∃y ∈ Y : x ∈ N (y)

Each element in X − Y has a neighbor in Y .
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Stochastic Pyramids

▶ Introduced by [Meer, 1989].
▶ Vi+1 : maximal independent set of Vi.

External stability:

∀v ∈ Vi − Vi+1 ∃v′ ∈ Vi+1 : (v, v′) ∈ Ei

Each non surviving vertex is adjacent to at least a
surviving one

Internal stability:
∀(v, v′) ∈ V 2

i+1 (v, v′) ̸∈ Ei

Two adjacent vertice cannot both survive
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MIVS construction scheme

i ii9 7 6 8 9ii
▶ Three variables :

pi = true if vi survives
qi = true if vi may become a surviving vertex (he is

candidate).
xi value of the vertex (function or random variable)
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MIVS construction scheme

i ii9 7 6 8 9i iii
▶ Three variables :

pi = true if vi survives
qi = true if vi may become a surviving vertex (he is

candidate).
xi value of the vertex (function or random variable)

p
(1)
i = xi = maxj∈V (vi){xj}

q
(1)
i =

∧
j∈V (vi) pj

(1)
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MIVS construction scheme

i ii9 7 6 8 9i iii k
▶ Three variables :

pi = true if vi survives
qi = true if vi may become a surviving vertex (he is

candidate).
xi value of the vertex (function or random variable)

p
(1)
i = xi = maxj∈V (vi){xj}

q
(1)
i =

∧
j∈V (vi) pj

(1)

p
(k+1)
i = p

(k)
i ∨ (q(k)

i ∧ xi = maxj∈V (vi){q
(k)
j xj})

q
(k+1)
i =

∧
j∈V (vi) pj

(k+1)
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MIVS : Father/child relationships
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▶ link each non surviving vertex to one of its surviving neighbour
⇒ definition of the edges

▶ merge non surviving vertice to surviving ones along the selected
edges(merge in simple graphs).
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▶ link each non surviving vertex to one of its surviving neighbour
⇒ definition of the edges

▶ merge non surviving vertice to surviving ones along the selected
edges(merge in simple graphs).
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Data driven decimation

i9 6 9i i8i7i i

▶ perform one iteration of the kernel computation,
▶ attach each non surviving vertex to a surviving one
▶ merge vertices
▶ continue on the reduced graph
▶ Method introduced by [Jolion, 2001].
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Data driven decimation

i9 6 9i ii ii
▶ perform one iteration of the kernel computation,
▶ attach each non surviving vertex to a surviving one
▶ merge vertices
▶ continue on the reduced graph
▶ Method introduced by [Jolion, 2001].
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Data driven decimation: conclusion

▶ only one step of the kernel computation is performed
▶ “Corresponds” to a model of the behavior of our brain,
▶ allows to avoid (in some cases) wrong merge operations.
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Exercice : MIVS and D3

Define:
▶ pi, qi (Meer’s algorithm, 2 steps),
▶ Reduction windows (legitimate father: max of r.v),
▶ Reduced graph.
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Exercice : MIVS and D3

▶ Apply D3 twice
▶ Legitimate father: max of r.v,
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MIES : Motivations

▶ Method introduced by Haximusa &
Kropatsch [Kropatsch et al., 2005]

▶ within the kernel construction scheme the probability that a
vertex survives decreases with its degree.

▶ The mean degree of vertices increases within the pyramid.
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MIES : Motivations

▶ Method introduced by Haximusa &
Kropatsch [Kropatsch et al., 2005]

▶ within the kernel construction scheme the probability that a
vertex survives decreases with its degree.

▶ The mean degree of vertices increases within the pyramid.
▶ ⇒ The ratio Vi

Vi−1
computed by the kernel method decreases

according to the level
▶ Increases the computational time, even on parallel processors.
▶ Useless graph storage.
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MIES

▶ Define a maximal matching C(kernel of G′ = (E, E′))
▶ (e, e′) ∈ E′ iff e and e′ are incident to a same vertex.

▶ Complete the matching C to C+

▶ Remove edges from C+ in order to obtain trees of depth 1.
▶ Merge vertice adjacent along selected edges.

yyyy

yyyy

yyyy

yyyy

▶ A set C ⊂ E is said to be a matching of
G = (V, E) if none of the edges of C are
adjacent to a same vertex.

▶ A matching is said to be maximal if the
addition of any edge breaks the matching
property.

▶ A matching is said to be maximum if no
larger matching may be found.
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▶ Remove edges from C+ in order to obtain trees of depth 1.
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MIES

▶ Complete the matching C to C+

▶ Remove edges from C+ in order to obtain trees of depth 1.
▶ Merge vertice adjacent along selected edges.yyyy
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Maximal Independent directed Edge
Sets (MIDES)

▶ How to design trees of depth 1 in one step ?
▶ How to take into account orientation of edges ?

▶ Solution: Orient edges.
y y

→
y y-�

▶ Combine MIS method with an appropriate edge’s neighborhood
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Maximal Independent directed Edge
Sets (MIDES)

▶ Let G = (V, E).

N (e) = N ((u, v)) =

y
u

y
v

-e
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Maximal Independent directed Edge
Sets (MIDES)

▶ Let G = (V, E).

N (e) = N ((u, v)) = {(u, v′) ∈ E}∪
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Maximal Independent directed Edge
Sets (MIDES)

▶ Let G = (V, E).

N (e) = N ((u, v)) = {(u, v′) ∈ E}∪
{(u′, u) ∈ E}∪

y
u

y
v

-e@@I

�
�	
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Maximal Independent directed Edge
Sets (MIDES)

▶ Let G = (V, E).

N (e) = N ((u, v)) = {(u, v′) ∈ E}∪
{(u′, u) ∈ E}∪
{(v, u′) ∈ E}

y
u

y
v

-e@
@I

��	

� �-
@@R

�
��

-�
��

@@R

▶ If e is selected none of the edges of N(e) may be selected.y y y- -
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Maximal Independent directed Edge
Sets (MIDES)

1. Apply a MIS on the edge graph G = (E, E′) with E′ defined from
N (E), yyyy
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Maximal Independent directed Edge
Sets (MIDES)

1. Apply a MIS on the edge graph G = (E, E′) with E′ defined from
N (E),

2. For each selected edge (u, v), mark v as survivor, u as non
survivor,yyyy
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Maximal Independent directed Edge
Sets (MIDES)

1. Apply a MIS on the edge graph G = (E, E′) with E′ defined from
N (E),

2. For each selected edge (u, v), mark v as survivor, u as non
survivor,

3. Mark remaining vertices as survivors.yyyy
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Data driven decimation and maximal
matching

▶ Method introduced by Pruvot & Brun
▶ The maximal matching is defined as a MIS on the graph

G = (E, E′).
1. Value each edge as a merging cost,
2. Perform only one iteration of the maximal matching algorithm
3. One edge is selected if it is locally minimal (the two regions like

each other more than any of their neighbour).
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Conclusion on pooling

We can do:
▶ No pooling (pure gcn),
▶ pure pooling (MIVS,MIES,MIDES,. . . ),
▶ gcn+pooling,

▶ gcn+pooling with aggregation of non survivors to survivors ⇒
two aggregation operations.

▶ gcn+pooling restricted to a selection (Top k, MIVS without
aggregation)
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Network embedding

▶ Aims: Find a vectorial embedding of vertices which encodes their
distance/proximity.

▶ Exemple of applications:
▶ Recommendation systems (link prediction),
▶ targeted advertizing (clustering (of users)),

▶ Problem: vertex embedding should capture both the vertex’s
features and the local structure of the graph.

▶ More formally: Given G = (V, E) find a function
f : u ∈ V → y ∈ Rd with d << |V | such that the proximity
between yu and yv allows to determine the existence of eu,v (or
richer property of the graph).

87 / 101



Exemple : SDNE

L = L2nd + αL1st + νLreg

▶ L2nd =
∑n

i=1 ||(ẑi − xi)⊙ bi||22
▶ xi is the ith row of A, ẑi is its reconstruction.
▶ bi = (bi,j)j∈{1,...,n}, bi,j = 1 if Ai,j = 0 and β > 1 otherwize.

▶ L1st =
∑

i,j Ai,j ||yK
i − yK

j ||22 = (yK)T LyK

▶ Lreg = 1
2
∑K

k=1(||W (k)||2F + ||Ŵ (k)||2F )
▶ W (k) and Ŵ (k) denote respectively the weighs of the the MLP

encoder and decoder
The reconstruction is purely structural (no node feature)
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Variational Graph Auto-Encoders

▶ Proposed by [Kipf and Welling, 2016]
Encoder:

Z = GCN(X, A) = ÃReLU(ÃXW0)W1

with Ã = D− 1
2 AD− 1

2

Decoder:
Â = σ(ZZT )(Ai,j = σ(zT

i zj)).

Loss: Minimize

log(p(A|Z)) =
∑

i,j|Ai,j=1

log(σ(zT
i zj))+

∑
i,j|Ai,j=0

log(1−σ(zT
i zj))

▶ A probabilistic version (with two GCN) estimating µi, σi such
that zi follows N (µi, σi) is also proposed.

L = Eq(Z|X,A) [log(p(A|Z)]−KL [q(Z|X, A)||p(Z)] ,

with q(Z|X, A) = Πn
i=1q(zi|X, A) ;

q(zi|X, A) = N (zi|µi, diag(zi)). P (Z) = Πn
i=1N (zi|0, I).
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ARGA/ARVGA

[Pan et al., 2018]

▶ Adversarial model D(Z) training:

−1
2Ez∼pz

log(D(Z))− 1
2EX log(1−D(G(X, A)))

▶ Complete model:

min
G

max
D

Ez∼pz
[log(D(Z)] + Ex∼p(x)[log(1−D(G(X, A)))]

▶ For each entry G = X, A we compute Z using the encoder and
train the discreminator with Z and an equal number of generated
entries.
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GraphSage
▶ GraphSAGE [Hamilton et al., 2017] embedding generation

algorithm
INPUT: G(V,E); input features {xv,∀v ∈ V }; depth K;

weight matrices W k; non-linearity σ; aggregator
functions AGGREGATEk, ∀k ∈ {1, ..., K};

OUTPUT: Vector representations zv for all v ∈ V .
h0

v ← xv,∀v ∈ V ;
for k= 1. . . K do

for v ∈ V do
hk

N (v) ← AGGREGATEk({hk−1
u ,∀u ∈ N (v)});

hk
v ← σ(W k.CONCAT (hk−1

v , hk
N (v)));

end for
hk

v ←
hk

v

||hk
v ||2 ,∀v ∈ V ;

end for
zv ← hK

v ,∀v ∈ V
▶ Loss:

JG(zu) = − log(σ(zT
u zv))−QEvn∼Pn(v) log(σ(−zT

u zvn
)),

v close from u (on a fixed length random walk), vn far from u(
Pn(v) negative sampling). Q: nb of negative samples.
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Graph embedding

▶ Determines a hidden representation of a graph z so as to be able
to reconstruct both the features and the vertices from z.

▶ Exemple of applications:
▶ Generate promizing new molecules (drug design),
▶ perform graph clustering through graph embedding
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GraphVAE

[Simonovsky and Komodakis, 2018]

Encoder: A feed forward network with edge-conditioned graph
convolutions (ECC) [Simonovsky and Komodakis, 2017]

Decoder: a MLP with three outputs in its last layer producing
Ã ∈ Rk×k, Ẽ ∈ Rk×k×de , F̃ ∈ Rk×k×dn . k: fixed size
(around 10)

Loss:
L(ϕ, θ; G) = Eqϕ(z|G)[− log pθ(G|z)] + KL[qϕ(z|G)||p(z)]
with p(z) a Gaussian distribution and :
− log pθ(G|z) = −λA log p(A′|z)−λF log p(F |z)−λE log p(E|z)
where A′, p(A′|z), p(F |z), p(E|z) are deduced from a
matching between G and G̃.
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GraphVAE: Extensions

GraphVAE do not provide any garantee on the (application based)
validity of the obtained graphs. For e.g. number of bounds of a given
atom.
▶ [Ma et al., 2018] formulate penalty terms that regularize the

output distribution of the decoder (add penality terms to the loss
corresponding to the different constraints).

▶ [Cao and Kipf, 2018] use an adversarial network to integrate the
constraints.
▶ The use of adversarial network avoid the use of a matching.
▶ A reward component enforce the generation of graphs with

specific properties.
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Definition & Examples

A spatial-temporal graph is a graph whose structure and/or
node/edge features vary over time.
▶ Brain Graphs:

▶ Each node corresponds to a region of the brain. Each node is
characterized by a feature vector encoding blood pressure (region
activity).

▶ Over time and according to neural activities different zones may
act synchronously: They are connected by an edge.

Both node features and graph structure vary over time.
▶ Trafic network:

▶ Each node correspond to a speed sensor,
▶ Each edge to the distance between sensors.

The structure is invariant but the evolution of the speed at one
sensor depends on the ones of the nearby sensors.

▶ Other applications: human activity recognition ; segmentation
from videos, context-rich human-object interactions, modeling
human motion, etc.
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Presentation

▶ Classical RNN:

Ht = σ(WXt + UH(t−1) + b)

▶ RNN with spatial convolution:

Ht = σ
(

Gconv(Xt, At, W ) + Gconv(H(t−1), At, U) + b
)

96 / 101



Structural RNN [Jain et al., 2015]

Let us consider a spatial-temporal graph G = (V, ES , ET ) where ET

connects a same node at different time steps.
▶ Group the nodes and edges into groups (factors) V1, . . . , Vp,

E1, . . . , Em. A group cannot mix spatial and temporal edges.
▶ Associate a RNN to each factor, connect a node factor Vi to an

edge Ej iff ∃u ∈ Vi, v ∈ V s.t(u, v) ∈ Ej . The resulting graph is
bipartite.

Interesting mainly if we can distinguish meaningfull groups.
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ST-GCN [Yu et al., 2017]

Combine 1D and Graph convolution operations in order to predict the
speed in a traffic network.
▶ Iterate two ST-convolution operations combined with a last

temporal convolution and a FC layer.
▶ Each ST-convolution is composed of two temporal convolutions

taking a graph convolution in sandwich:
temporal convolution: combine a convolution of size Kt with a

Gated Linear Unit (GLU) operation:

Γ ∗τ Y = P ⊙ σ(Q)

P and Q being obtained by the convolution kernel.
Graph convolution: See slide 20.

▶ Overall operation:

vl+1 = Γl
1 ∗τ ReLU(θl ∗G (Γl

0 ∗τ vl)) ∈ R(M−2(Kt−1))×n×Cl+1

with vl ∈ RM×n×Cl , M : length of the time serie.
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Metric Learning

G1
-

G2
-

�

�

�

�
-∆, c

Optim. - d(G1, G2) = minx∈An,m
xT ∆x + cT x

A = {G1, . . . , Gn}

B = {G′
1, . . . , G′

p}

�

�

�

�
- [d(Gi, G′

j)]i,j∈{1,...,n}×{1,...,p}
- Hinge Loss

- Regress. MSE Loss-

99 / 101



Metric Learning

▶ Learned params correspond to the parameters of the metric (e.g.
costs of substitution/insertion/removal for the GED).

▶ The metric may be applied to regression or classification
problem.

Regression: Kernel ridge or kNN (cheaper) regression. MSE
Loss.

Classification: Hinge Loss. A single set (e.e. A) may be used.

HL =
∑

i,j∈{1,...,n}×{1,...,p}

yi,jd(Gi, G′
j)

with yi,j = 1 if Gi and G′
j belong to a same class,

−1 otherwize.
Let us note that we have two nested optimizations: The computation
of the metric and the backward. Both may interfere. For example, too
many iteration steps for computing the metric may induce vanishing
gradients.
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