
Graphs and Numerical Spaces

Luc Brun
GREYC – CNRS UMR 6072, University of Caen, ENSICAEN

Luc.Brun@ensicaen.fr

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Motivation

Structural Pattern Recognitionyq q Rich description of objectsyq q Poor properties of graph’s space does not allow to readily
generalize/combine sets of graphs

Statistical Pattern Recognitionyq q Global description of objectsyq q Numerical spaces with many mathematical properties (metric,
vector space, . . .).

Motivation
Analyse large famillies of structural and numerical objects using a unified
framework based on pairwise similarity.

2 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Outline

1 Explicit Embeddings

2 Basics about Kernels

3 String Kernels

4 Graph Kernels

5 Graph Neural Networks

6 Conclusion

3 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Explicit embedding
From points to Euclidean Distance matrix

Let us consider a set of points {x1, . . . , xn} in Rn and the n× n matrix
D = (dij) defined by:

dij = ‖xi − xj‖2 = < xi − xj , xi − xj >
= < xi, xi > + < xj , xj > −2 < xi, xj >

The diagonal of D is 0.
Let S denote the n× n matrix with Sij =< xi, xj >.
We have :

Dij = Sii + Sjj − 2Sij

an S is definite positive (∀c ∈ Rn ctSc ≥ 0). Indeed:

∀c ∈ Rn


ctSc =
∑n
i=1

∑n
j=1 ci < xi, xj > cj

=
∑n
i=1 ci < xi,

∑n
j=1 cjxj >

= ‖
∑n
j=1 cjxj‖2 ≥ 0

4 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Explicit Embedding
From Matrix to points ?

We additionally have:
1.

√
dij ≥ 0 positivity

2.
√
dij = 0⇒ xi = xj separation

3.
√
dij =

√
dji symmetry

4. ∀k ∈ {1, . . . , n}
√
dij ≤

√
dik +

√
dkj triangular inequality

Question:
For any matrix D fulfilling 1, 3, 4 with a 0 diagonal can we find
{x1, . . . , xn} such that dij = ‖xi − xj‖2 ?
The answer is: No.

D =


0 1 5 d14
1 0 4 1
5 4 0 1
d14 1 1 0

 √d23 = 2
d24 = d34 = 1

Triangular inequality:√
5−1(≈ 1.23) ≤

√
d14 ≤

√
2(≈ 1.41) d

x1
d
x2

dx3
d x4

1

1

1

�
�
�
�
�
�
�
�

√
5

5 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Explicit Embedding
From Matrix to points: step 1

Given a set of objects, and a set of distances between these objects,
fulfilling all the requirements of a distance we can not ensure that an
embedding may be associated to objects.
Let us first note that the problem is ill posed. Indeed given
dij = ‖xi − xj‖2, any translation of (xi)i∈{1,...,n} would solve the problem
equally.
We should thus fix an origin. Let’s choose the barycenter x = 1

n

∑n
i=1 xi.

We obtain after basic calculus (trust me or compute yq q)
< xi − x, xj − x >= −1

2

[
dij −

1

n

n∑
k=1

djk −
1

n

n∑
l=1

djl +
1

n2

n∑
k=1

n∑
l=1

dlk

]
This is equivalent to consider the centered matrix:

Sc = −1

2
(I − eet)D(I − eet) = −1

2

[
D − 1

n
eetD − 1

n
Deet +

1

n2
eetDeet

]
6 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Explicit Embedding
From Matrix to points: step 1

Given a set of objects, and a set of distances between these objects,
fulfilling all the requirements of a distance we can not ensure that an
embedding may be associated to objects.
Let us first note that the problem is ill posed. Indeed given
dij = ‖xi − xj‖2, any translation of (xi)i∈{1,...,n} would solve the problem
equally.
We should thus fix an origin. Let’s choose the barycenter x = 1

n

∑n
i=1 xi.

We obtain after basic calculus (trust me or compute yq q)
< xi − x, xj − x >= −1

2

[
dij −

1

n

n∑
k=1

djk −
1

n

n∑
l=1

djl +
1

n2

n∑
k=1

n∑
l=1

dlk

]
This is equivalent to consider the centered matrix:

Sc = −1

2
(I − eet)D(I − eet) = −1

2

[
D − 1

n
eetD − 1

n
Deet +

1

n2
eetDeet

]
6 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Explicit Embedding
From Matrix to points: step 1

Given a set of objects, and a set of distances between these objects,
fulfilling all the requirements of a distance we can not ensure that an
embedding may be associated to objects.
Let us first note that the problem is ill posed. Indeed given
dij = ‖xi − xj‖2, any translation of (xi)i∈{1,...,n} would solve the problem
equally.
We should thus fix an origin. Let’s choose the barycenter x = 1

n

∑n
i=1 xi.

We obtain after basic calculus (trust me or compute yq q)
< xi − x, xj − x >= −1

2

[
dij −

1

n

n∑
k=1

djk −
1

n

n∑
l=1

djl +
1

n2

n∑
k=1

n∑
l=1

dlk

]
This is equivalent to consider the centered matrix:

Sc = −1

2
(I − eet)D(I − eet) = −1

2

[
D − 1

n
eetD − 1

n
Deet +

1

n2
eetDeet

]
6 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Explicit Embedding
From Matrix to points: step 2

Let us considered a distance matrix D (e.g. coming from an edit distance)
and its centered version Sc = − 1

2 (I − eet)D(I − eet).
Matrix Sc is symmetric. If Sc is semi definite positive. By a basic SVD
we obtain Sc = V ΛV t. V matrix of eigenvectors, Λ matrix of positive
eigenvalues.
Let X = V

√
Λ. We have Sc = XXt and matrix Sc is indeed a matrix of

scalar products.
Each line of X may be interpreted as the embedding into Rn of
the corresponding object.
Pb: No one said to matrix Sc that it has to be semi definite positive. We
do so using (for e.g.) the constant shift:

S̃c = Sc − λn(Sc)I

where λn(Sc) is the minimal eigenvalue of Sc.
Such a transformation modifies the initial metric:

D̃ = D − 2λn(Sc)(eet − I)

7 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Explicit Embedding
From Matrix to points: step 2

Let us considered a distance matrix D (e.g. coming from an edit distance)
and its centered version Sc = − 1

2 (I − eet)D(I − eet).
Matrix Sc is symmetric. If Sc is semi definite positive. By a basic SVD
we obtain Sc = V ΛV t. V matrix of eigenvectors, Λ matrix of positive
eigenvalues.
Let X = V

√
Λ. We have Sc = XXt and matrix Sc is indeed a matrix of

scalar products.
Each line of X may be interpreted as the embedding into Rn of
the corresponding object.
Pb: No one said to matrix Sc that it has to be semi definite positive. We
do so using (for e.g.) the constant shift:

S̃c = Sc − λn(Sc)I

where λn(Sc) is the minimal eigenvalue of Sc.
Such a transformation modifies the initial metric:

D̃ = D − 2λn(Sc)(eet − I)

7 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Explicit Embedding
Alternatives and Applications

The above solution corresponds to the minimization of:

min
X
‖D2

ij − dij(X)2‖2

Alternative optimizations exist such as Smacof minimization:

min
X
‖Dij − dij(X)‖2

which unfortunately has no analytical solution → solved by iterations.
Applications:

Data visualization (marketing , geography, chemistry,....)

Mesh processing (flatening, texture maping,. . .)

8 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Explicit Embedding
Discussion

yq qThis method allows to associate vectors to structural objects (strings,
graphs) such that the distance between vectors is close or equal to the
initial distance between objects.yq qVectors may serve as input of any classification/regression algorithm.yq q The embedding should be computed on the whole set → forbid the
use of a train set and on line classification.yq q The embedding is relative to each set. Not exactly what we want, we
would like an embedding which reflect the properties of our distance
independently of the considered set.

9 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Kernels

10 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Kernels : Definition

A kernel k is a symmetric similarity measure on a set χ

∀(x, y) ∈ χ2, k(x, y) = k(y, x)

k is said to be definite positive (d.p.) iff k is symmetric and iff:

∀(x1, . . . , xn) ∈ χn

∀(c1, . . . , cn) ∈ Rn
} n∑
i=1

n∑
j=1

cicjk(xi, xj) ≥ 0

K = (k(xi, xj))(i,j)∈{1,...,n} is the Gramm matrix of k. k is d.p. iff:

∀c ∈ Rn − {0}, ctKc ≥ 0

11 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Examples
If χ = Rn, classical kernels include:

Linear kernel:
K(x, y) = xty

Polynomial kernel

K(x, y) = (xty)d + c, c ∈ R, d ∈ N

Cosinus kernel:
K(x, y) =

xty

‖x‖‖y‖
Rational kernel:

K(x, y) = 1− ‖x− y‖2

‖x− y‖2 + b
, b ∈ R− {0}

Gaussian Kernel

K(x, y) = exp

(
−‖x− y‖

2

2σ2

)
, σ ∈ R− {0}

12 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Kernels and scalar products

Aronszajn 1950 :
A kernel k is d.p. on a space χ
if and only if
it exists

one Hilbert space H and
a function ϕ : χ→ H

such that:

k(x, y) =< ϕ(x), ϕ(y) >

13 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Reproducing kernel Hilbert Space

To each d.p. kernel is associated a functional Hilbert space H called the
Reproducing kernel Hilbert Space.
H is composed of function of the form:

f(.) =

n∑
i=1

αik(xi, .)

H is composed of functions mapping real values to objects x ∈ χ.
For any f =

∑n
i=1 αik(xi, .) and g =

∑m
i=1 βik(yi, .):

< f, g >=

n∑
i=1

m∑
j=1

αiβjk(xi, yj)

The norm induced by the scalar product on H is defined as:

‖f‖2K =

n∑
i=1

n∑
i=1

αiαjk(xi, xj)

14 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Support Vector Regression/Classification

Given a set of observations (xi, yi) ∈ χ× R, support vector
regression/classification methods aim to find f∗ ∈ H such that:

f∗ = argmin
f∈H

C.Loss(xi, yi, f(xi)) + ‖f‖K

Where:
Loss(): is the loss function (attach to data) and
‖f‖K : is a regularization term. Encodes the smoothness of f .
C is the tradeoff between both terms.

Kernel design determines how classification/regression algorithms
generalize from the training set.

15 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

A basic example

Let χ = R2 and k(x, y) = (xty)2 + 1

For any x = (x1, x2) and y = (y1, y2) we have:

k(x, y) = (x1y1 + x2y2)2 + 1
= 1 + x21y

2
1 + x22y

2
2 + 2x1x2y1y2

The function ϕ from R2 to R4 defined by:

ϕ(x) =


1
x21
x22√

2x1x2



Satisfies
k(x, y) =< ϕ(x), ϕ(y) >

Remark: An hyperplane in H = R4 corresponds to a quadric of R2.

< ϕ(x), n >= K ⇒ n1 + n2x
2
1 + n3x

2
2 + n4

√
2x1x2 = K

16 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

A basic example

Let χ = R2 and k(x, y) = (xty)2 + 1

For any x = (x1, x2) and y = (y1, y2) we have:

k(x, y) = (x1y1 + x2y2)2 + 1
= 1 + x21y

2
1 + x22y

2
2 + 2x1x2y1y2

The function ϕ from R2 to R4 defined by:

ϕ(x) =


1
x21
x22√

2x1x2


Satisfies

k(x, y) =< ϕ(x), ϕ(y) >

Remark: An hyperplane in H = R4 corresponds to a quadric of R2.

< ϕ(x), n >= K ⇒ n1 + n2x
2
1 + n3x

2
2 + n4

√
2x1x2 = K

16 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

A basic example

Let χ = R2 and k(x, y) = (xty)2 + 1

For any x = (x1, x2) and y = (y1, y2) we have:

k(x, y) = (x1y1 + x2y2)2 + 1
= 1 + x21y

2
1 + x22y

2
2 + 2x1x2y1y2

The function ϕ from R2 to R4 defined by:

ϕ(x) =


1
x21
x22√

2x1x2


Satisfies

k(x, y) =< ϕ(x), ϕ(y) >

Remark: An hyperplane in H = R4 corresponds to a quadric of R2.

< ϕ(x), n >= K ⇒ n1 + n2x
2
1 + n3x

2
2 + n4

√
2x1x2 = K

16 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

The Kernel Trick

Linear classifier become non-linear using kernels

Problem: ϕ is usually unknown.
Many methods only need scalar product between data (not explicit
coordinates) ⇒ replace scalar product by kernel.
E.g. k-NN:

d2K(x1, x2) = ‖ϕ(x1)− ϕ(x2)‖2
= < ϕ(x1)− ϕ(x2), ϕ(x1)− ϕ(x2) >
= < ϕ(x1), ϕ(x1) > + < ϕ(x2), ϕ(x2) > −2 < ϕ(x1), ϕ(x2) >

dK(x1, x2) = k(x1, x1) + k(x2, x2)− 2k(x1, x2)

Kernel trick
Algorithm defined in H ⇒ (linear methods,non linear separation),
Data stored in χ.

Interesting but so what. . .
17 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Outline

Kernel and strutured data
The kernel trick provides an implicit embedding whose metric is defined from
our similarity criterion (the kernel).

18 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Do we absolutely need definite positiveness

No.([Haasdonk, 2005]).
results of SVM may be interpreted even with a non definite positive
kernel (distance to convex hull).
Several methods have been specifically designed to deal with non definite
positive kernels.
But ,

Results are usually more difficult to interpret (Krein space),
Mathematical properties are usually weaker,

19 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

1 Explicit Embeddings

2 Basics about Kernels

3 String Kernels

4 Graph Kernels

5 Graph Neural Networks

6 Conclusion

20 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Global alignment kernel
Recall

Let A(n,m) denote all locals alignments from string of lenght n to strings
of length m.
The Dynamic Time warping (DTW) between x and y is defined as:

DTW (x, y) = min
π∈A(n,m)

Dx,y(π)

with

Dx,y(π) =

|π|∑
i=1

ϕ(xπ1(i), yπ2(i))

ϕ any difference operator.
Example: x = restauration, y = restaurant:

1 2 3 4 5 6 7 8 9 10
π1 : 1 2 3 4 5 6 7 8 12 13

r e s t a u r a n −
π2 : 1 2 3 4 5 6 7 8 9 10

r e s t a u r a n t

21 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Global alignment kernel
Design (Cuturi 2011)

DTW (x, y) is not a valid distance function (due to the min operator). We
thus define our kernel as follows:

kGA(x, y) =
∑

π∈A(n,m)

e−Dx,y(π)

which is equivalent to:

kGA(x, y) =
∑

π∈A(n,m)

Π
|π|
i=1κ(xπ1(i), yπ2(i)).

Few results:
kGA is d.p. iff κ and κ

1+κ
are d.p.

kGA may be computed with the same computational scheme than the e.d.
with M0,0 = 1,M0,i =Mj,0 = 0 and

Mij = κ(xi, yj) (Mi−1,j−1 +Mi,j−1 +Mi−1,j)

22 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Global Alignment kernel
Main Ideas

Trajectories Heat Map Clustering K=20 Clustering K=50
We pass from:

t =

(
x1
y1

)
. . .

(
xn
yn

)
To:

t = z1 . . . zp with p << n

23 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Global Alignment kernel
Clustering of trajectories

.

.

.

24 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Detection of Abnormal trajectories

TRACKING

SCENE
PARTITION

TRAJECTORY
PREPROCESSING

A B C D

E
F

GH

CLUSTERING

ABFD

TRAINING SET

Cluster n

Cluster 2

Cluster 1

Prototypes of
Normal Trajectories

…

CLASSIFICATION DECISION

25 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Retreival of most similar trajectories

SKETCH

TRAJECTORIES
PREPROCESSING

ABFD
KD-TREE
SEARCH

26 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Walk kernels

Basement paper: [Haussler, 1999].
Walks: Let G = (V,E). W = (v1, . . . , vn) is a walk iff
(vi, vi+1) ∈ E,∀i ∈ {1, . . . , n− 1}.

t t
t t t

 t t t t t tis a walk

Kernel between walks

K(h, h′) =

{
0 if |h| 6= [h′| and
Kv(v1, v

′
1).Π

|h|
i=1Ke(ei, e

′
i)Kv(vi+1, v

′
i+1) otherwize

27 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Walks kernels

Walk kernels [Kashima et al., 2003] :

K(G1, G2) =
∑

h∈W(G1)

∑
h′∈W(G2)

K(h, h′)λG1
(h)λG2

(h′)

Covers different Graph kernels [Vishwanathan et al., 2010]:

If λG(h) =


1 iff |h| = n Kis a nth order walk kernel
PG(h)(Markov RW) Kis a random walk/marginalized kernel
β|h| Kis a geometric kernel

PG(h) = ps(h1)Πn
i=1pt(hi|hi−1)pq(hn) with |h| = n

Walks may induce totering problems: Walks with arbitrary length on the
same set of edges and vertices.
Framework extended to tree-pattern [Mahé and Vert, 2009].

28 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Walk kernel
Computation

Kronecker product
Given two real matrices An×m and Bp×q, the Kronecker product of A and
B (A⊗B) belongs to Rnp×mq and is defined as:

A⊗B =

 a1,1B a1,2B . . . a1,mB
...

...
...

an,1B an,2B . . . an,mB


Tensor product graph Let G1 = (V1, E1) and G2 = (V2, E2), the tensor
product graph G = G1 ⊗G2 = (V,E) is defined by:

V = {(v1, v2) ∈ V1 × V2}
E = {((v1, v2), (v′1, v

′
2)) | (v1, v′1) ∈ E1 and (v2, v

′
2) ∈ E2}

tA tB
A
A
At
C

�
�
�

t
1

t
2

A1 tt
B1 tt
C1 tt

A2tt
B2tt
C2tt

A
A
A
A
A

ZZZ�
�
�
�
�

��
�

29 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Walk kernel
Computation

Any walk in G1 ⊗G2 corresponds to a common walk in G1 and G2 and
vice versa.
If M1 is the adjacency matrix of G1 and M2 the one of G2, M1 ⊗M2 is
the adjacency matrix of G1 ⊗G2.(
(M1 ⊗M2)k

)
i,j

encodes the number of common walks of length k
between nodes i = (v1, v2) and j = (v′1, v2).
Matrices:

(I−λM1⊗M2)−1 =

+∞∑
k=0

λk(M1⊗M2)k or exp(λM1⊗M2) =
+∞∑
k=0

λk

k!
(M1⊗M2)k

encode the numbers of all common walks of G1 and G2 weighted by a
factor depending of their length (λk or λk

k!).
Kernel (e.g.):

K(G1, G2) =

np∑
i=1

mq∑
j=1

exp(λM1 ⊗M2)i,j

30 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Finite Bag kernels

G → B(G)
G′ → B(G′)

}
K(G,G′) = K(B(G), B(G′))

Three independent step to design a graph kernel.

Bags of patterns
construction scheme

Bag of Pattern kernel Pattern kernel

Graph Kernel

31 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Graph kernels and chemoinformatics

Aims : Predict the physical or biological
properties of a molécule using the similarity
principle :
Two structurally similar molecules should have

similar properties.

Graph definition : G = (V,E, µ, ν)

µ encodes atom’s type,
ν encodes types of bonds.

32 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Bag of patterns : unlabeled treelets

One step beyong bag of paths : bags of treelets (trees of depth at most 6).

Treelets

G0 G1 G3

G4 G5 G6

G8 G9 G10 G11

G12

G2

G7

G13

33 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Bag of labeled treelets

Treelet code
Two parts :

Structural part : Treelet type (G0, G1, . . .)
Label part : Canonical traversal of the treelet

H3C

CH3

CH3

O

Figure: Code : G09-C1C1C1O1C1C

Code(G) = Code(G′)⇔ G ' G′

34 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Bag of labeled treelets

Treelet code
Two parts :

Structural part : Treelet type (G0, G1, . . .)
Label part : Canonical traversal of the treelet

H3C

CH3

CH3

O5

3

2

4 4
2

Figure: Code : G09-C1C1C1O1C1C

Code(G) = Code(G′)⇔ G ' G′

34 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Bag of labeled treelets

Treelet code
Two parts :

Structural part : Treelet type (G0, G1, . . .)
Label part : Canonical traversal of the treelet

H3C

CH3

CH3

O

Figure: Code : G09-C1C1C1O1C1C

Code(G) = Code(G′)⇔ G ' G′

34 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Bag of labeled treelets

Treelet code
Two parts :

Structural part : Treelet type (G0, G1, . . .)
Label part : Canonical traversal of the treelet

H3C

CH3

CH3

O

Figure: Code : G09-C1C1C1O1C1C

Code(G) = Code(G′)⇔ G ' G′

34 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Bag of labeled treelets

Treelet code
Two parts :

Structural part : Treelet type (G0, G1, . . .)
Label part : Canonical traversal of the treelet

H3C

CH3

CH3

O

Figure: Code : C1C1C1O1C1C

Code(G) = Code(G′)⇔ G ' G′

34 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Kernel definition

From graph to histogram

H3C

CH3

CH3

O

(a) Molecule

τ(fτ (G))
C(5) O(1)
C-C(3) C-O(2)
C-C-C(2) C-C-O(2) C-O-C(1)
C-C-O(1)

C
...

(b) Histogram

Kernel definition

K(G1, G2) =
∑

τ∈B(G1)∩B(G2)

K(fτ (G1), fτ (G2))

where K(., .) is any kernel between real numbers (e.g. K(x, y) = e−
(x−y)2

σ2). 35 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Lets go back on bag definition
Some Facts :

Our first solution considers bags containing all patterns,
We do not have as in shape recognition a measure a priori of the relevance
of a pattern,
The relevance of a given treelet should be fixed a posteriori given a dataset.

MKL (Multiple Kernel Learning) method :

If : K(x, y) =

n∑
i=1

wiKi(x, y)

MKL allows to fix (wi)i∈{1,...,n} optimally.
Our kernel :

K(G1, G2) =
∑

τ∈B(G1)∩B(G2)

K(fτ (G1), fτ (G2))
not.
=

∑
τ∈B(G1)∩B(G2)

Kτ (G1, G2)

A direct application of the MKL method provides the new kernel:

K(G1, G2) =
∑

τ∈B(G1)∩B(G2)

wτK(fτ (G1), fτ (G2))

where wτ is defined using MKL.
36 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Cycle information

Given G = (V,E), define a graph C = (VC , EC) such that:
c ∈ VC encodes a cycle of G.
e ∈ EC encodes an adjacency relationship between two cycles.

Apply our treelet kernel on C and combine it with the one on G.

HN

HN

O

O

OH

O

O

OH

HN

HN

Molecular graph. Relevant cycles(RC). RC graph. RC hypergraph.

37 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Some results
Chemoinformatics

Method RMSE

Times(s)

Familly
Gaussian edit distance 10.27

1.35

Graph edit distance
Graph Embedding (Bunke) 10.19 Graph edit distance
Graph Embedding (EDM) 12.2

7.21

Graph edit distance
Kmean 12.24 Finite bag of paths

Random Walks 18.72

19.10

Infinite bag of walks
Tree Pattern Kernel 11.02

4.98

Infinite bag of tree patterns
Treelet Kernel (TK) 8.10

0.07

Finite bag of tree patterns
TK + Forward Selection 7.05

TK + Backward Elimination 6.75
Inter treelet kernel 5.89

TK + MKL 5.24

Table: Boiling point prediction on acyclic molecule dataset using 90% of the dataset
as train set and remaining 10% as test set.

38 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Some results
Chemoinformatics

Method RMSE Times(s) Familly
Gaussian edit distance 10.27 1.35 Graph edit distance

Graph Embedding (Bunke) 10.19 Graph edit distance
Graph Embedding (EDM) 12.2 7.21 Graph edit distance

Kmean 12.24 Finite bag of paths
Random Walks 18.72 19.10 Infinite bag of walks

Tree Pattern Kernel 11.02 4.98 Infinite bag of tree patterns
Treelet Kernel (TK) 8.10 0.07 Finite bag of tree patterns

TK + Forward Selection 7.05
TK + Backward Elimination 6.75

Inter treelet kernel 5.89
TK + MKL 5.24

Table: Boiling point prediction on acyclic molecule dataset using 90% of the dataset
as train set and remaining 10% as test set.

38 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Graph Neural Network

39 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Graph Neural Networks: Three main steps

1 Agregation,
2 Decimation,
3 Pooling

40 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Agregation: The problem

1

2

3

4

l1,2

l1,3

l1,4

h1 = fw (l1,

{l1,2, l1,3, l1,4},
{h2, h3, h4},
{l2, l3, l4}
)

{
hv = fw(lv, lCON(v), hN (v), lN (v))
ov = gw(hv, lv)

with CON(v) = {(v, v′) v′ ∈ N (v)}
41 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Iteration

1

2

3

4

l1,2

l1,3

l1,4

t = 0

t = 1

t = 2

t = 3

t = 4

{
htv = fw(lv, lCON(v), h

t−1
N (v), lN (v))

ov = gw(hTv , lv)

42 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Graph Convolution
The problem

Using images we learn w0 . . . , w8:

w5 w1 w6

w3 w0 w4

w7 w2 w8

w1 denotes the weigh of the pixel above the central pixel.
Using graphs:

iw0

yw1

yw2
�� yw3
AA

iw0

yw1

yw2
�� yw3
AA

iw0

yw1

yw2
�� yw3
AA

Without embedding nothing distinguishes the cyan,red and green neighbors.

43 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

How to become permutation invariant

htv = fw(lv, lCON(v), h
t−1
N (v), lN (v))

htv =
∑

v′∈N (v)

f(lv, lv,v′ , lv′ , h
(t−1)
v′)

where f may be:
An affine function [Scarselli et al., 2009],

f(lv, lv,v′ , lv′ , h
(t−1)
v′) = A(lv,lv,v′ ,lv′)h

(t−1)
v′ + b(lv,lv,v′ ,lv′)

A MLP [Massa et al., 2006]

44 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

More complex agregation functions

A long Short-term Memory [Hochreiter and Schmidhuber, 1997,
Peng et al., 2017, Zayats and Ostendorf, 2018]
A Gated Reccurent Unit [Li et al., 2016]

h
(1)
v = [xTv , 0] (1)

a
(t)
v = ATv [h

(t−1) T
1 , . . . , h

(t−1) T
|V |]T + b (2)

ztv = σ(W za
(t)
v + Uzh

(t−1)
v) (3)

rtv = σ(W ra
(t)
v + Urh

(t−1)
v) (4)

h̃
(t)
v = tanh

(
Wa

(t)
v + U

(
rtv � h

(t−1)
v

))
(5)

htv = (1− ztv)� h
(t−1)
v + ztv � h̃tv (6)

ztv: update gate, rtv: reset gate, Av: weight by edges types.
Learned weight by edge type:
a
(t)
v =

∑
w∈N (v)Alv,wh

(t−1)
w [Gilmer et al., 2017]

45 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Graph attention Networks
[Velickovic et al., 2018]

Not all neighbors have a same importance for update:

αv,v′ = softmaxv′(ev,v′) =
exp(ev,v′)∑

v′′∈Ni exp(ev,v′′)

With : ev,v′ = LeakyReLU(aT [Whv||Whv′])
a,W : weight vector and matrix.
Update rule:

h′v = σ(
∑
v′∈Nv

αv,v′Whv′)

With K features:
h′v = ||Kk=1σ(

∑
v′∈Nv

αkv,v′W
khv′)

46 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Graph Convolution

47 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

The spectral approach [Defferrard et al., 2016]

Graph Laplacian:

L = D −A with Dii =

n∑
j=1

Aij

A adjacency matrix of a graph G.
Matrix L is real symmetric semi definite positive:

L = UΛUT

U orthogonal, Λ real(positive) diagonal matrix.
A classical result from signal processing:

x ∗ y = F−1(x̂.ŷ)

*: convolution operation, F−1 inverse Fourrier transform, x̂ fourrier
transform of x, ’.’ term by term multiplication.

48 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Graph Convolution
The spectral approach

If x is a signal on G, x̂ = UTx can be considered as its “Fourrier”
transform. We have:

Ux̂ = UUTx = x

U is thus the inverse Fourrier transform.
By analogy:

z ∗ x = U(ẑ � x̂) = U
(
UT z � UTx

)
= U

(
diag(UT z)UTx

)
�: Hadamard product.
Let gθ(Λ) be a diagonal matrix. The filtering of x by gθ is:

y = U
(
gθ(Λ)UTx

)
=
(
Ugθ(Λ)UT

)
x

49 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Graph convolution
The spectral approach

If:

gθ(Λ) =

K−1∑
i=0

θiΛ
i

Then:

y =
(
Ugθ(Λ)UT

)
x = U

(
K−1∑
i=0

θiΛ
i

)
UTx =

(
K−1∑
i=0

θiL
i

)
x

One parameter per ring:
Lx : one step (direct) neighborhood,
L2x : two step neighborhood (idem for L3, L4, . . .)

Problem: Computing Li for i ∈ {0, . . . ,K − 1} is problematic for large
matrices (SVD computation)

50 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Graph convolution
The spectral approach

Let us consider Chebyshev polynomial Tk(x) = 2xTk−1(x)− Tk−2(x),
with T0 = 1 and T1(x) = x.

gθ(Λ) =

K−1∑
i=0

θiΛ
i → gθ(Λ) =

K−1∑
i=0

θiTi(Λ̃)

Λ̃ normalized version of Λ.
we have:

x̃k = 2L̃x̃k−1 − x̃k−2 with x̃0 = x and x̃1 = L̃x

O(K|E|) operations to get x̃k.
If K = 2 it simplifies to [Kipf and Welling, 2017]: y = θL′x where L′ is a
regularized version of the normalized Laplacian.

51 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Graph convolution
Non spectral approaches

[Simonovsky and Komodakis, 2017]

yi =
1

|N (i)|
∑

j∈N (i)

Fθ(L(j, i))xj + b

F : Parametric function of θ which associates one weigh to each edge label
L(j, i).
[Verma et al., 2017]:

yi =
1

|N (i)|

M∑
m=1

∑
j∈N (i)

qθm(xj , xi)Wmxj + b

qθm(., .) mth learned soft-assignment function. Wm weight matrix.

52 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Graph Propagation
Conclusion

Recurent networks
[Hochreiter and Schmidhuber, 1997]

[Massa et al., 2006]

[Scarselli et al., 2009]

[Li et al., 2016]

[Gilmer et al., 2017]

[Peng et al., 2017]

[Zayats and Ostendorf, 2018]

Convolution

[Bruna et al., 2014]

[Defferrard et al., 2016]

[Kipf and Welling, 2017]

[Simonovsky and Komodakis, 2017]

[Verma et al., 2017]

Agregation

53 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

What’s next ?

Graph Downsampling, Graph pooling, Graph final decision: Some
solutions but still the jungle.

54 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Conclusion

Three graph metrics

-

6Freedom

Machine Learning

t
Graph kernels

t
Graph edit distance

t
Graph Alignment

6
Mathematical Richnesst Graph Kernels

t Graph alignment

t Graph edit distance

Graph neural network:
Still in their infancy,
A great potential.

55 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Bibliography

56 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. (2014). Spectral networks and locally
connected networks on graphs. In 2nd International Conference on Learning
Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track
Proceedings.

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in Neural Information
Processing Systems 29: Annual Conference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain, pages 3837–3845.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017). Neural
message passing for quantum chemistry. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, pages 1263–1272.

Haasdonk, B. (2005). Feature space interpretation of svms with indefinite kernels. IEEE
Trans. Pattern Anal. Mach. Intell., 27(4):482–492.

Haussler, D. (1999). Convolution kernels on discrete structures ucsc crl. Technical Report
UCSC-CRL-99-10, Department of Computer Science, University of California at Santa
Cruz, Santa Cruz, CA 95064.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9(8):1735–1780.

Kashima, H., Tsuda, K., and Inokuchi, A. (2003). Marginalized kernels between labeled
graphs. In Machine Learning, Proceedings of the Twentieth International Conference
(ICML 2003), August 21-24, 2003, Washington, DC, USA, pages 321–328.

56 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. S. (2016). Gated graph sequence
neural networks. In 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings.

Mahé, P. and Vert, J.-P. (2009). Graph kernels based on tree patterns for molecules.
Machine Learning, 75(1):3–35.

Massa, V. D., Monfardini, G., Sarti, L., Scarselli, F., Maggini, M., and Gori, M. (2006). A
comparison between recursive neural networks and graph neural networks. In Proceedings
of the International Joint Conference on Neural Networks, IJCNN 2006, part of the IEEE
World Congress on Computational Intelligence, WCCI 2006, Vancouver, BC, Canada,
16-21 July 2006, pages 778–785.

Peng, N., Poon, H., Quirk, C., Toutanova, K., and Yih, W. (2017). Cross-sentence n-ary
relation extraction with graph lstms. TACL, 5:101–115.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2009). The
graph neural network model. IEEE Trans. Neural Networks, 20(1):61–80.

Simonovsky, M. and Komodakis, N. (2017). Dynamic edge-conditioned filters in
convolutional neural networks on graphs. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 29–38.

56 / 56

Explicit Embeddings
Basics about Kernels
String Kernels
Graph Kernels
Graph Neural Networks
Conclusion

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2018).
Graph attention networks. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings.

Verma, N., Boyer, E., and Verbeek, J. (2017). Dynamic filters in graph convolutional
networks. CoRR, abs/1706.05206.

Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R., and Borgwardt, K. M. (2010).
Graph kernels. Journal of Machine Learning Research, 11:1201–1242.

Zayats, V. and Ostendorf, M. (2018). Conversation modeling on reddit using a
graph-structured LSTM. TACL, 6:121–132.

56 / 56

	Explicit Embeddings
	Basics about Kernels
	Reproducing kernel Hilbert Space

	String Kernels
	Graph Kernels
	Kernels based on infinite Bags
	Kernels based on finite Bags
	Application to chemoinformatics

	Graph Neural Networks
	Agregation

	Conclusion
	Bibliography

