@Article{braquelaire-96-1, author = "Braquelaire, Jean Pierre and Brun, Luc", title = "Image Segmentation with Topological Maps and Inter-pixel Representation", journal = "Journal of Visual Communication and Image representation", year = 1998, volume = 9, number = 1, pages = {62-79}, url = {article:=http://www.greyc.ensicaen.fr/~luc/ARTICLES/seg_with_topo_map.ps.gz}, theme = {nonhierarchique}, abstract = "In this paper we present a data structure improving region segmentation of 2D images. This data structure provides an efficient access to both geometric features such as the set of pixels of a region and topological features like the frontier of a region, the neighbors of a region or the set of regions included in one region. It allows us to combine different segmentation algorithms without restriction. Interactive refinement or merge of regions can also be performed efficiently." } @InProceedings{braquelaire-96-2, author = "Braquelaire, Jean Pierre and Luc Brun and Anne Vialard", title = "Inter-Pixel Euclidean Paths for Image Analysis", volume = 1176, pages = "193-204", booktitle = "Lecture Notes in Computer Science", year = 1996, organization = "Discrete Geometry for Computer Imagery", publisher = "Springer-Verlag", theme = {nonhierarchique}, url = {article (.ps.gz):=http://www.greyc.ensicaen.fr/~luc/ARTICLES/dgci.ps.gz} abstract = "Inter-pixel boundaries provide a robust and consistent description of segmented images but have a poor visual aspect, especially when being enlarged. Approximation curve are sometimes used to smooth discrete boundaries but they do not provide error free reconstruction and may be uneasy to use in this context. In this paper we show the advantages of using Euclidean paths in order to smooth inter-pixel boundaries and we demonstrate the interest of inter-pixel Euclidean paths for the purpose of image segmentation and analysis." } @InProceedings{CI-braure-2006, author = {Braure de Calignon, M. and Luc Brun and Lachaud, Jacques Olivier}, title = {Combinatorial Pyramids and discrete geometry for energy minimizing segmentation}, booktitle = {Proc. Int. Symposium on visual Computing}, year = 2006, number = 4292, series = {LNCS}, address = {Lake Tahoe, Nevada}, month = {November}, publisher = {springer}, theme= {nonhierarchique}, url = {pdf:=http://www.greyc.ensicaen.fr/~luc/ARTICLES/isvc2006.pdf}, abstract = "The scale set theory allows to define a hierarchy of segmentations according to a scale parameter. This theory closely related to the Bayesian and the Minimum description Length(MDL) frameworks describes the energy of a partition as the sum of two terms : a goodness to fit and a regularisation term. This last term may be interpreted as the encoding cost of the model associated to the partition. It usually includes the total length of the partition's boundaries and is simply computed as the number of lignels between the regions of the partition. We propose to use a better estimation of the total length of the boundaries by using discrete length estimators. We state the basic properties which must be fulfilled by these estimators and show their influence on the partitition's energy." } @InProceedings{CI-Hassani-06-1, author = {El-hassani, M. and D. Rivasseau and S. Jehan-Besson and M. Revenu and D. Tschumperl{'e} and L. Brun and M. Duranton}, title = {A time-consistent video segmentation algorithm designed for real-time implementation}, booktitle = {IEEE International Conference on Electronics, Circuits and Systems}, year = 2006, address = {Nice France}, month = {December}, theme = {nonhierarchique} } @InProceedings{CI-Hassani-2006-2, author = {El-hassani, M. and D. Rivasseau and M. Duranton and S. Jehan-Besson and D. Tschumperl{'e} and L. Brun and M. Revenu}, title = {Vectorization of a statistical segmentation}, booktitle = {International Congress of Imaging Science}, year = 2006, address = {Rochester}, month = {May}, theme = {nonhierarchique} } @Article{RI-ELHASSANI-2008, author = {Elhassani, M. and Jehan-Besson, S. and Brun, L. and Revenu, M. and Duranton, M. and Tschumperl{'e}, D. and Rivasseau, D.}, title = {A Time-Consistent Video Segmentation Algorithm designed for Real-Time Implementation}, journal ={VLSI Design}, year = {2008}, volume ={2008}, number = {Article ID 892370}, pages = {12 pages}, theme = {nonhierarchique} } @InProceedings{CI-NEE-2008, author = "N{'e}e, G. and Jehan-Besson, S. and Brun, L. and Revenu, M.", title = "Significance tests and statistical inequalities for region matching", booktitle = "Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR International Workshops S+SSPR 2008", year = "2008", editor = "N. da Vitaro Lobo et al.", volume = "5342", series = "Lecture Notes in Computer Science", pages = "350--360", month = "December", publisher = "Springer", theme = {nonhierarchique} } @Article{brun-02-5, author = {Luc Brun and Myriam Mokhtari and Domenger, Jean Philippe}, title = {Incremental modifications on segmented image defined by discrete maps}, journal = {Journal of Visual Communication and Image Representation}, pages= {251-290}, volume= 14, year = 2003, url = {article:=http://www.greyc.ensicaen.fr/~luc/ARTICLES/incr_mod_disc_map.ps.gz}, abstract = "The data structure used to encode an image partition is of critical importance for most of region-based segmentation algorithms. Usual data structures are often convenient to extract only few parameters from the partition while inducing complex processing to compute others. Moreverer, the split and merge operations allowed by such data structure are often restricted. A new model~cite{braquelaire-96} allows segmentation algorithms to extract a wide range of parameters from a partition. In this paper we describe the two basic primitives used by segmentation algorithms to modify a partition: the segment insertion and segment suppression.", theme = {nonhierarchique} } @InProceedings{brun-99-4, author = {L. {B}run}, title = {Mod{`e}les Math{'e}matiques et Repr{'e}sentation discr{`e}tes pour la Description des Images Couleurs}, booktitle = {{'E}cole d'{'e}t{'e} - Images Couleur}, year = 1999, address = {Site GIAT Industries, Saint Etienne}, month = {September}, theme = {nonhierarchique,couleur}, url = {slides(ppt):=http://www.greyc.ensicaen.fr/~luc/ARTICLES/presentation_ecole_ete.ppt, article(.ps.gz):=http://www.greyc.ensicaen.fr/~luc/ARTICLES/ecole_ete.ps.gz}, abstract = "Nous allons pr{'e}senter dans ce document, un syst{`e}me permettant {`a} l'utilisateur de guider le processus de segmentation. La prise en compte des interventions de l'utilisateur et les modifications de la partition en fonction de celles-ci sont r{'e}alis{'e}es {`a} l'aide d'un mod{`e}le permettant de coder la g{'e}om{'e}trie et la topologie d'une partition. Ce mod{`e}le, combin{'e} {`a} plusieurs algorithmes de segmentation ainsi qu'a diverses fonctions d'{'e}ditions, permet {`a} l'utilisateur de d{'e}signer interactivement les r{'e}gions qui doivent {^e}tre d{'e}coup{'e}es ou fusionn{'e}es. Cette interaction entre l'utilisateur et les algorithmes de segmentation doit permettre d'obtenir de bons r{'e}sultats sur une tr{`e}s grande vari{'e}t{'e} d'images sans ajustement de param{`e}tres." } @InProceedings{brun-97, author = "L. {B}run and Bazin, J. M.", title = "Am{'e}lioration des performances d'un syst{`e}me de segmentation par l'utilisation d'un syst{`e}me expert", year = 1998, theme = {nonhierarchique}, booktitle = "Advances in Intelligent Computing- IPMU'98", organization = "IPMU", url = {article:=http://www.greyc.ensicaen.fr/~luc/ARTICLES/ipmu.ps.gz}, abstract = " Nous allons pr{'e}senter un nouveau syst{`e}me de segmentation bas{'e} sur une collaboration entre un algorithme de segmentation existant et un syst{`e}me expert. Le nouveau syst{`e}me se distingue de l'algorithme de segmentation pr{'e}c{'e}dent par une distinction claire entre les connaissances de l'expert en Imagerie et les algorithmes utilisant ces connaissances. Le gain en modularit{'e} obtenu permet d'enrichir facilement la base de connaissances et de diminuer le nombre de questions triviales pos{'e}es {`a} l'utilisateur." } @InProceedings{brun-96-3, author = "L. {B}run and Domenger, J. P.", title = "A new split and merge algorithm with Topological maps and inter-pixel Boundaries ", booktitle = "The fifth International Conference in Central Europe on Computer Graphics and Visualization", year = 1997, month = "february", theme = {nonhierarchique}, url= {article:=http://www.greyc.ensicaen.fr/~luc/ARTICLES/new_split_merge.ps.gz} abstract = " Usually, the segmentation algorithms implementing the split and merge operations are restricted to a split stage followed by a merge stage. In this paper, we present a new split and merge algorithm combining alternatively split and merge operations at each recursive step. This algorithm is based on a data structure called {em discrete map}~cite{braquelaire-96}. This data structure provides an efficient framework to implement split and merge operations." } @InProceedings{brun-97-2, author = "Luc {B}run and Domenger, Jean Philipe and Braquelaire, Jean Pierre", title = "Discrete maps : a framework for region segmentation algorithms", booktitle = "Workshop on Graph based representations", year = 1997, month = "April", theme = {nonhierarchique}, OPTorganization = "IAPR-TC15", address = "Lyon", url= {article (.ps.gz):=http://www.greyc.ensicaen.fr/~luc/ARTICLES/GbR97.ps.gz} note = "published in Advances in Computing (Springer)", abstract = "In this paper, we present different recent segmentation works based on discrete maps. Discrete maps provide an efficient framework for region based segmentation methods. A discrete is a mixed model. It combines an encoding of the discrete boundaries of the image regions with topological graphs which represents the topology of the image." } @PhdThesis{brun-96-4, author = "L. {B}run", title = "Segmentation d'images couleur {`a} base Topologique", school = "Universit{'e} Bordeaux I", year = 1996, key = 1651, theme = {nonhierarchique}, address = "351 cours de la Lib{'e}ration 33405 Talence", month = "December", url = "these:=http://www.greyc.ensicaen.fr/~luc/ARTICLES/these.ps.gz", abstract = "La segmentation est un processus visant {`a} extraire des objets pr{'e}sents dans une image. La plupart des m{'e}thodes de segmentation d{'e}velopp{'e}es jusqu'{`a} pr{'e}sent sont d{'e}volues {`a} une classe d'images particuli{`e}re (photo satellite, image IRM, etc.). De plus l'information colorim{'e}trique contenue dans les images est insuffisamment prise en compte. Le but de ce travail est de rem{'e}dier {`a} ces deux limitations. Nous proposons deux m{'e}thodes permettant d'extraire des informations pertinentes {`a} partir d'ensembles de couleurs. Nous proposons de plus plusieurs m{'e}thodes de segmentation bas{'e}es sur les cartes planaires et sur une repr{'e}sentation des r{'e}gions par fronti{`e}res inter-pixels. Ces m{'e}thodes sont tr{`e}s g{'e}n{'e}rales et utilisent un environnement de programmation permettant de d{'e}velopper rapidement des logiciels de segmentation." } @InBook{damiand-07, author = {Guillaume Damiand and Luc Brun}, editor = {David Coeurjolly and Annick Montanvert and Jean-Marc Chassery}, title = {G{'e}om{'e}trie discr{`e}te et images num{'e}riques}, chapter = {Cartes combinatoires pour l'analyse d'images}, publisher = {Hermes}, year = 2007, pages = {107-124}, theme = {nonhierarchique} } @article{RI-BRUN-2009, author = {Aline Deruyver and Yann Hod{'e} and Luc Brun}, title = {Image interpretation with a conceptual graph: Labeling over-segmented images and detection of unexpected objects}, journal = {Artif. Intell.}, volume = {173}, number = {14}, year = {2009}, pages = {1245-1265}, ee = {http://dx.doi.org/10.1016/j.artint.2009.05.003}, bibsource = {DBLP, http://dblp.uni-trier.de}, theme="nonhierarchique", abstract={The labeling of the regions of a segmented image according to a semantic representation (ontology) is usually associated with the notion of understanding. The high combinatorial aspect of this problem can be reduced with local checking of constraints between the elements of the ontology. In the classical definition of Finite Domain Constraint Satisfaction Problem, it is assumed that the matching problem between regions and labels is bijective. Unfortunately, in image interpretation the matching problem is often non-univocal. Indeed, images are often over-segmented: one object is made up of several regions. This non-univocal matching between data and a conceptual graph was not possible until a decisive step was accomplished by the introduction of arc consistency with bilevel constraint (FDCSPBC). However, this extension is only adequate for a matching corresponding to surjective functions. In medical image analysis, the case of non-functional relations is often encountered, for example, when an unexpected object like a tumor appears. In this case, the data cannot be mapped to the conceptual graph, with a classical approach. In this paper we propose an extension of the FDCSPBC to solve the constraint satisfaction problem for non-functional relations.} } @InProceedings{CI-ELHASSANI-2006, author = {M. Elhassani and D. Rivasseau and M. Duranton and S. Jehan-Besson and D. Tschumperle and L. Brun and M. Revenu }, title = {Vectorization of a statistical segmentation}, booktitle = {International Congress of Imaging Science}, year = 2006, address = {Rochester, NY, USA}, month = {May}, theme= {nonhierarchique} } @InProceedings{CN-Hassani-2006, author = {M. Elhassani and D. Rivasseau and S. Jehan-Besson and M. Revenu and D. Tschumperle and L. Brun and M. Duranton}, title = {Conception d'un algorithme robuste de segmentation vid{'e}o pour des applications temps r{'e}el}, booktitle = {CORESA}, year = 2006, address = {Caen}, month = {December}, theme = {nonhierarchique} }